10378. Unexpressed
One integer n is given. How many integers between 1 and n (inclusive) are unrepresentable as ab, where a and b are integers not less than 2?

Input. One positive integer n (1 ≤ n ≤ 1010).
Output. Print the amount of unrepresentable numbers.
	Sample input 1
	Sample output 1

	8
	6

	
	

	Sample input 2
	Sample output 2

	100000
	99634

SOLUTION
data structures - set
Algorithm analysis
The number of non-representable numbers is

n – the amount of numbers representable in the form ab
Find all numbers representable as ab, where a > 1, b > 1, ab ≤ n. There are not many such numbers, so all of them can be generated and stored in a container. The powers can contain repetitions, for example 212, 46 and 163. Duplicate numbers should be removed, so we’ll use set as a container.
Generate the powers ab, where a = 2, 3, 4,…,
[image: image1.wmf]n

. For each value of a, iterate over b = 2, 3, 4, ... until the power is not greater than n. For example:
· powers of two 22, 23, 24, … ≤ n;
· powers of three 32, 33, 34, … ≤ n;
· powers of four 42, 43, 44, … ≤ n;
Example
In the interval [1; 8] there are two numbers representable as powers: 22 = 4 and 23 = 8. Thus, there will be 8 – 2 = 6 unrepresentable numbers.
Let n = 50. Then the following powers will be generated:
· 22 = 4, 23 = 8, 24 = 16, 25 = 32 (26 = 64 > 50);
· 32 = 9, 33 = 27 (34 = 81 > 50);
· 42 = 16 (43 = 64 > 50);
· 52 = 25 (53 = 125 > 50);
· 62 = 36 (63 = 216 > 50);
· 72 = 49 (73 = 343 > 50);
Note that 24 = 16 and 42 = 16, however, duplicates in the set will be deleted. For n = 50, the set s will have the form: {4, 8, 9, 16, 25, 27, 32, 36, 49}. The number of unrepresentable numbers in the interval [1; 50] is 50 – s.size() = 50 – 9 = 41.
Algorithm realization
Declare a set s.
#define ll long long
set<ll> s;

Read the value of n.
scanf("%lld", &n);

Iterate through the base of the power a.
for (a = 2; a * a <= n; a++)

{
Initialize x = a2. Then in the variable x iterate over the powers of number a: a3, a4, … . Insert the generated powers into the set s.
 ll x = a * a;

 while (x <= n)

 {

 s.insert(x);

 x *= a;

 }

}

The value of s.size() contains the amount of numbers that can be represented as ab. Print the answer n – s.size().
printf("%lld\n", n - s.size());
Java realization
import java.util.*;
class Main
{
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 TreeSet<Long> s = new TreeSet<Long>();
 long n = con.nextLong();
 for (long a = 2; a * a <= n; a++)
 {
 long x = a * a;
 while (x <= n)
 {
 s.add(x);
 x *= a;
 }
 }
 System.out.print(n - s.size());
 con.close();
 }
}
_1676447619.unknown

