10379. Maximum frequency stack
Design a stack-like data structure to push elements to the stack and pop the most frequent element from the stack. The possible commands are:

· push n – pushes an integer n onto the top of the stack;

· pop – removes and prints the most frequent element in the stack. If there is a tie for the most frequent element, the element closest to the stack’s top is removed and printed.

Input. Each line contains a single command.
Output. For each pop command print on a separate line the corresponding result.
	Sample input 1
	Sample output 1

	push 4

push 5

push 4

push 6

push 7

pop

push 5

pop

pop
	4

5

7

	
	

	Sample input 2
	Sample output 2

	push 5

push 3

push 1

push 3

push 9

pop

pop

pop

pop

pop
	3

9

1

3

5

SOLUTION
data structures - stack
Algorithm analysis
For each number x we’ll store the number of times freq[x] that it occurs in the stack. Let’s choose a map as a data structure for freq.

Declare an array of stacks vector<stack<int>> st. Here st[i] stores elements that occur on the stack i + 1 times (the numbering of cells in the st array starts from zero). The order in which the elements are in st[i] matches the order in which they are pushed onto the stack.
Let the number x be pushed to the stack for the k-th time. If the element st[k – 1] does not exist, then add (push_back) the element to the st array. Then push x to the top of the stack st[k – 1].

[image: image1.emf]push 4

push 5

push 4

push 6

push 4

push 5

4

5

4 4

6

5

st

0

st

1

st

2

When you delete element, you must pop the item from the top of the last stack.

[image: image2.emf]push 4

push 5

push 4

push 6

push 4

push 5

4

5

4 4

6

5

st

0

st

1

st

2

pop

For example, if in the future there are only pop operations, then the elements from the stack will be removed in the following order: 4, 5, 4, 6, 5, 4.
Example
Consider the order in which elements are pushed into array of stacks for the next example.

[image: image3.emf]push 5

push 5

push 1

push 6

push 5

5

1

5 5

6

1

st

0

st

1

st

2

push 1

push 1

push 2

1

2

When removed, items will be popped from the stack in the following order: 1, 5, 1, 5, 2, 6, 1, 5.

Algorithm realization
To work with the frequency stack, we declare the FreqStack class.

class FreqStack
{

public:
Declare:

· map freq, where freq[x] contains the number of times an element x occurs in the stack;

· array of stacks st;
 map<int, int> freq;

 vector<stack<int>> st;

The function push pushes the element x to the stack.

 void push(int x)

 {

 int f = freq[x];

 freq[x] = f + 1;

 if (f == st.size()) st.push_back(stack<int>());

 st[f].push(x);

 }

The function pop pops element from the stack.

 int pop()

 {

 int x = st.back().top();

 st.back().pop();

 if (st.back().empty()) st.pop_back();

 freq[x]--;

 return x;

 }

};

The main part of the program. Read the input data. Simulate the stack.
while (cin >> str)

{

 if (str == "push")

 {

 cin >> n;

 fs.push(n);

 }

 else // pop
 cout << fs.pop() << endl;

}

_1693299758.vsd
push 4

push 5

push 4

push 6

push 4

push 5

4

5

4

4

6

5

st0

st1

st2

pop

_1693302075.vsd
push 5

push 5

push 1

push 6

push 5

push 1

5

1

5

5

6

1

st0

st1

st2

push 1

push 2

1

2

_1693299619.vsd
push 4

push 5

push 4

push 6

push 4

push 5

4

5

4

4

6

5

st0

st1

st2

