10456. Server
Amin and Murad decided to create a “Minecraft” game server. They invited k guests to their grand opening ceremony. The invited guests live in different cities and will have a certain ping delay when connecting to the server (depending on the location). Amin and Murad, realizing the potential problem, decided to choose the most optimal location for the server.

There are n cities numbered from 1 to n and m two-way transmission channels between these cities. You can connect to the server only through these channels. Through these channels, you can create a connection between any two cities. However, no two cities can have more than one canal directly connecting them, and no city has canals connecting a city to itself. A delay time of wi is also given for each channel. And so, the delay time for a connection from a city to a server is equal to the smallest sum of channel delays on the way from this city to a server among all possible paths.

Amin and Murad want to choose a city for the server so that the total connection delay of all guests is minimal during the connection. If the server is located in the city where some of the guests live, then the connection delay for this guest will be equal to 0.

If it is possible to select several cities with a minimum total delay, then Amin and Murad will choose the city with the lowest number. You need to find the city that Amin and Murad will choose and the total delay in connecting all guests to the server.

Input. The first line contains three integers n (1 ≤ n ≤ 104), m (1 ≤ m ≤ 4 * 104), k (1 ≤ k ≤ 100) – the number of cities, transmission channels and guests, respectively. The second line contains k different numbers ci (1 ≤ ci ≤ n) – the numbers of the cities where the guests live. Each of the following m lines contains three integers ui, vi, wi (1 ≤ ui, vi ≤ n). These numbers indicate a two-way link between the cities ui and vi with a delayed connection wi (1 ≤ wi ≤ 104).

Output. Print two integers – the number of the city where the server will be located and the total delay in connecting all guests to this server.

	Sample input
	Sample output

	5 6 3

1 2 5

1 2 10

1 4 3

2 4 2

2 5 8

3 4 5

3 5 3
	2 13

SOLUTION
graphs - Dijkstra
Algorithm analysis
Since n ≤ 104, use an adjacency list to represent the graph.
Start Dijkstra’s algorithm from the cities in which the guests live. Find the sum of the distances from each vertex to all guests. The vertex with the smallest sum will be the one we are looking for. If there are several such vertices, then choose the one with the lowest number.

Note that the server will not necessarily be located in the city where one of the guests lives.
Example
The graph given in the example has a form:

[image: image1.emf]1 2

5

3

4

10

3

5

2

3

8

Run Dijkstra’s algorithm from the vertices where guests live: 1, 2 and 5. Write down the shortest distance from each guest to all vertices.

[image: image2.emf]0 5 8 3 11 distance from1

1 2 3 4 5

5 0 7 2 8 distance from2

11 8 3 8 0 distance from 5

16 13 18 13 19 sum

Let’s find the sum of the distances from each vertex to all guests. The smallest sum of distances is 13. The smallest vertex number for which this sum is achieved is 2.

Thus, the server should be located in city 2, the distance from it to the guests is 5 + 0 + 8 = 13.
Algorithm realization
Declare an infinity.
#define INF 0x3F3F3F3F

The structure edge stores information about the edge: which vertex the node goes to and the weight dist of the edge.
struct edge
{

 int node, dist;

 edge(int node, int dist) : node(node), dist(dist) {}

};

Comparator for sorting pairs (node, dist) in descending order of dist.
bool operator< (edge a, edge b)

{

 return a.dist > b.dist;

}

Declare the adjacency list of the graph.
vector<vector<edge> > g;

The function Dijkstra implements Dijkstra’s algorithm. The input is the graph g and the initial vertex start. The return value is an array d, where d[i] contains the shortest distance from start to i.
void Dijkstra(vector<vector<edge> >& g, vector<int>& d, int start)

{

 priority_queue<edge> pq;

 pq.push(edge(start, 0));

 d = vector<int>(n + 1, INF);

 d[start] = 0;

 while (!pq.empty())

 {

 edge e = pq.top(); pq.pop();

 int v = e.node;

 if (e.dist > d[v]) continue;

 for (int j = 0; j < g[v].size(); j++)

 {

 int to = g[v][j].node;

 int cost = g[v][j].dist;

 if (d[v] + cost < d[to])

 {

 d[to] = d[v] + cost;

 pq.push(edge(to, d[to]));

 }

 }

 }

}

The main part of the program. Read the input data.
scanf("%d %d %d", &n, &m, &k);

c.resize(k);

for (i = 0; i < k; i++)

 scanf("%d", &c[i]);

Read the input weighted graph.
g.resize(n + 1);

for (i = 0; i < m; i++)

{

 scanf("%d %d %d", &a, &b, &w);

 g[a].push_back(edge(b, w));

 g[b].push_back(edge(a, w));

}

Run Dijkstra’s algorithm from the cities where the guests live.
dp.resize(n + 1);

for (i = 0; i < k; i++)

{

 Dijkstra(g, dist, c[i]);

 for (j = 1; j <= n; j++)

 dp[j] += dist[j];

}

At the moment, dp[i] stores the sum of the shortest distances from vertex i to cities with guests. It remains to find the minimum value among dp[i] and print the required answer. The ptr variable stores the smallest vertex number where the server should be located.
res = INF;

for (i = 1; i <= n; i++)

{

 if (dp[i] < res)

 {

 res = dp[i];

 ptr = i;

 }

}

Print the answer.

printf("%d %d\n", ptr, dp[ptr]);

_1677870266.vsd
1

2

5

3

4

10

3

5

2

3

8

_1760365507.vsd
0

5

8

3

11

distance from 1

1

2

3

4

5

5

0

7

2

8

distance from 2

11

8

3

8

0

distance from 5

16

13

18

13

19

sum

