10995. Squares and cubes
List all perfect squares and perfect cubes of positive integers in a sequence:
1, 4, 8, 9, …

For a given value n, determine how many numbers from 1 to n appear in this list.

In other words, find how many numbers x satisfy the condition that x is either a square or a cube of a positive integer (including those that are both square and cube at the same time).

Input. The first line contains the number of test cases t.

Each of the following t lines contains a single positive integer n (1 ≤ n ≤ 109).

Output. For each test case, print on a separate line the number of integers from 1 to n that are perfect squares or perfect cubes of positive integers.

	Sample input
	Sample output

	5

1

10

25

1000000

987654321
	1

4

6

1090

32390

SOLUTION
binary search
Algorithm analysis
Generate all perfect squares and cubes of positive integers from 1 to 109 and store them in a set s. Duplicate values will be automatically eliminated, since a set does not allow duplicates. Then, copy the elements of the set into an array v, which will be sorted in ascending order because s is an ordered set.
Next, for each input number n, use binary search to determine how many squares and cubes do not exceed n. To do this, we use an upper bound search (upper_bound) – it returns the position of the first element in array v that is strictly greater than n. This position is the answer to the query, as it corresponds to the number of qualifying values.
Example
Let’s generate all perfect squares and cubes of numbers from 1 to 100 (inclusive).

[image: image1.emf]148916252736496481100

01234567891011

Now process the query for n = 30. In this case, the resulting position is pos = 7, meaning there are exactly 7 such numbers in the interval from 1 to 30.
Note that indexing in the array v starts from zero.

[image: image2.emf]148916252736496481100

01234567891011

upper_bound(v.begin(), v.end(), 30) –v.begin() = 7

Algorithm implementation
Generate all perfect squares and cubes of positive integers from 1 to 109 and store them in a set s. If a number is both a perfect square and a perfect cube (for example, 64), it will be added to the set only once, since sets automatically eliminate duplicates.
for (i = 1; i * i <= 1000000000; i++)

 s.insert(i * i);

for (i = 1; i * i * i <= 1000000000; i++)

 s.insert(i * i * i);

Then, transfer the elements of the set into an array v. Because the set s is ordered, the array v will also be sorted in ascending order.
v = vector<int>(s.begin(), s.end());

Process the given number of tests sequentially.
scanf("%d", &tests);

while (tests--)

{

 scanf("%d", &n);
Using binary search with an upper bound, find the smallest index pos such that all perfect squares and cubes of positive integers not exceeding n are located in the array at positions from 0 to pos – 1. Thus, the number of listed numbers from 1 to n equals pos.
 res = upper_bound(v.begin(), v.end(), n) - v.begin();

 printf("%d\n", res);

}

_1726422352.vsd
1

4

8

9

16

25

27

36

49

64

81

100

0

1

2

3

4

5

6

7

8

9

10

11

_1726422932.vsd
1

4

8

9

16

25

27

36

49

64

81

100

0

1

2

3

4

5

6

7

8

9

10

11

upper_bound(v.begin(), v.end(), 30) – v.begin() = 7

