1070. Fill the line
n segments are colored on the number line. The coordinates of the left and right endpoints of each segment, li and ri​, are given. Find the total length of the colored part of the number line.

Input. The first line contains the integer n (1 ≤ n ≤ 15000). The next n lines contain two integers li and ri (-109 ≤ li ≤ ri ≤ 109) – the coordinates of the endpoints of the segments.

Output. Print the total length of the colored part of the number line.

	Sample input
	Sample output

	5

6 8

1 2

0 3

7 9

2 4
	7

SOLUTION
geometry – sweeping line
Algorithm analysis
Store the endpoints of the n segments in an array v, keeping track of whether each point is a left or right endpoint. Then sort the 2 * n points by their x-coordinate v[i]. Next, move from left to right through the intervals (v[i], v[i + 1]) between the points, simulating a sweep line.
Maintain a variable depth, which represents the number of segments covering the interval (v[i], v[i + 1]). Initially, depth is set to 0. Increase depth by 1 when encountering a point that is the start of a segment and decrease it by 1 when encountering a point that is the end of a segment.
The total length of the painted portion of the line is the sum of the lengths of intervals xi+1 – xi, where depth ≠ 0.
Example
Let us consider the set of the following segments:

[image: image1.emf]0 1 2 3 4 5 6 7 8 9

1 2 2 1 0 1 2 1

depth

The answer is the sum of the lengths of the intervals xi+1 – xi, where depth ≠ 0.
Algorithm implementation
The endpoints of the segments will be stored in an array v as pairs: (x-coordinate of the point, label indicating whether it is the start or end of a segment).
vector<pair<int, int> > v; // (x, flag), flag: 0 = Left, 1 = Right
Read the segments and form an array of points.
scanf("%d", &n);

for (i = 0; i < n; i++)

{

 scanf("%d %d", &Left, &Right);

 v.push_back({Left, 0}); // start of a segment
 v.push_back({Right, 1}); // end of a segment
}

Sort the points by their x-coordinate.
sort(v.begin(), v.end());

Maintain the depth of overlap (the number of segments covering the current interval) in the depth variable.
depth = 0;
The length of the painted portion of the line is computed in the variable res.
res = 0;
Move through the points from left to right. For each value of i, consider the interval [v[i].first, v[i + 1].first].
· If the point v[i] is the start of a segment, increase the depth by 1.
· If the point v[i] is the end of a segment, decrease the depth by 1.
If depth > 0 on the current interval, the interval is considered painted, and its length is added to res.

Since array v contains 2 * n points, the loop will iterate over 2 * n – 1 intervals.
for (i = 0; i < v.size() - 1; i++)

{

 if (v[i].second == 0) depth++; else depth--;

 if (depth > 0) res += v[i + 1].first - v[i].first;

}

Print the answer.

printf("%d\n", res);

Algorithm implementation – class
Declare a class Point, which stores the x-coordinate of the point and a label c (which indicates whether the point is the start or the end of a segment).
class Point

{

public:

 int x;

 char c; // 'b' – start of segment, 'e' – end of segment
 Point(void)

 {

 x = 0; c = '-';

 }

 Point(int x, char c) : x(x), c(c) {};

};

Point p[MAX];

The function f is a comparator for sorting the points by their x-coordinate.
int f(Point a, Point b)

{

 return a.x < b.x;

}

The main part of the program. Read the segments. Construct an array of points.
scanf("%d",&n);

for(i = 0; i < 2 * n; i += 2)

{

 scanf("%d %d",&x,&y);

 p[i] = Point(x,'b');

 p[i+1] = Point(y,'e');

}

Sort the points by their x-coordinate.
sort(p, p + 2 * n, f);

Simulate the movement of the sweep line from left to right.
depth = len = 0;

for(i = 0; i < 2*n - 1; i++) // move along the interval [p[i]...p[i+1]

{

 if (p[i].c == 'b') depth++;

 if (p[i].c == 'e') depth--;

 if (depth > 0) len += p[i+1].x - p[i].x;

}

Print the answer.

printf("%d\n",len);

_1462184825.vsd
0

1

2

3

4

5

6

7

8

9

1

2

2

1

0

depth

1

2

1

