11002. Tree painting
You are given a tree (an undirected connected acyclic graph) consisting of n vertices. You are playing a game on this tree.

Initially, all vertices are white. On the first turn of the game, you choose one vertex and paint it black. Then on each turn you choose a white vertex adjacent (connected by an edge) to any black vertex and paint it black.

Each time you choose a vertex (even during the first turn), you gain a number of points equal to the size of the connected component consisting only of white vertices that contains the chosen vertex. The game ends when all vertices are painted black.

Let's see the following example:

[image: image1.emf]1

42

356

9

78

Vertices 1 and 4 are painted black already. If you choose vertex 2, you will gain 4 points for the connected component consisting of vertices 2, 3, 5 and 6. If you choose vertex 9, you will gain 3 points for the connected component consisting of vertices 7, 8 and 9.

Your task is to maximize the number of points you gain.

Input

The first line contains an integer n (2 ≤ n ≤ 2 * 105) – the number of vertices in the tree.

Each of the next n – 1 lines describes an edge of the tree. Edge i is denoted by two integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi), the indices of vertices it connects.

It is guaranteed that the given edges form a tree.

Output

Print one integer – the maximum number of points you gain if you play optimally.

	Sample input 1
	Sample output 1

	9

1 2

2 3

2 5

2 6

1 4

4 9

9 7

9 8
	36

	
	

	Sample input 2
	Sample output 2

	5

1 2

1 3

2 4

2 5
	14

SOLUTION
tree
Algorithm analysis
The number of points gained is uniquely determined by the first selected vertex. It remains to iterate through all possible vertices as the first one, find the received number of points, and print the maximum value among them.
Let’s start the depth-first search from the vertex 1. Let weight[v] be the size of the subtree (number of vertices) rooted at vertex v. Let to1, to2, …, tok be the sons of v. Then

weight[v] = 1 + weight[to1] + weight[to2] + … + weight[tok]
The second depth-first search will visit all the vertices and recompute the maximum number of points that you can gain if you start from this vertex.

Consider the function dfs2. We are at the node v, which ancestor is p. If the vertex v is chosen as the first in the game, then the number of points obtained is s.

void dfs2(int v, int p, long long s)

Let’s make a move along the edge (v, to) and show how to find the answer if the game is initially started from the vertex to. In fact, we will rehang the tree from v to node to.

[image: image2.emf]v

to

w[u

1

]

w[u

2

]

w[x]

p

w[to]

s = w[v]

w[p]

v

to

w[u

1

]

w[u

2

]

w[x]

p

w[v]

w[to]

w[p]

dfs(v, p, s)

dfs(to, v, s -w[to] + n -w[to])

On the left, there is a tree rooted at v. The vertex to is one of its sons, p is the ancestor. On the right, there is a tree rooted at to.

To compute the value of weight[to] in the right tree, subtract the weight[to] of the left tree from the value of s in the left tree and add the number of vertices in the dotted area. It equals n – weight[to].

Example
Let the first selected vertex be 1. Then the number of points received will be 25.

[image: image3.emf]1

42

356

9

78

111

4

1

1

3

4

9

9 + 4 + 4 + 1 + 1 + 1 + 3 + 1 + 1 = 25

If the first selected vertex is 2, then the number of points gained is 26. The transition from vertex 1 to vertex 2 will be done as follows. Subtract from s = 25 the value of weight[2] = 4 and add (9 – weight[4]) = 5. We get 25 – 4 + 5 = 26, the value of s for the tree rooted at node 2.

[image: image4.emf]4

3

11

1

1

1

1

42

356

9

78

5

9

9 + 1 + 1 + 1 + 5 + 4 + 3 + 1 + 1 = 26

The maximum number of points is 36, which will be gained if you start the game from the vertex number 7.

[image: image5.emf]6

8

1

1

1

1

1

42

356

9

78

5

4

9 + 8 + 1 + 6 + 5 + 4 + 1 + 1 + 1 = 36

9

Algorithm realization
Declare the adjacency list of the graph g.
vector<vector<int>> g;

vector<int> weight;

The function dfs1 starts a depth-first search from a node v which parent is p. Compute weight[v] – the size of the subtree (number of vertices) rooted at vertex v.

void dfs1(int v, int p)

{

 weight[v] = 1;

 for (int i = 0; i < g[v].size(); i++)

 {

 int to = g[v][i];

 if (to == p) continue;

 dfs1(to, v);

 weight[v] += weight[to];

 }

}

The function dfs2 starts a depth first search from the node v which parent is p. If the vertex v is chosen first in the game, then the number of points gained is s.

void dfs2(int v, int p, long long s)

{

 res = max(res, s);

 for (int i = 0; i < g[v].size(); i++)

 {

 int to = g[v][i];

 if (to == p) continue;

 dfs2(to, v, s - weight[to] + n - weight[to]);

 }

}

The main part of the program. Read the input data. Construct a graph.

scanf("%d", &n);

g.resize(n + 1);

weight.resize(n + 1);

for (i = 1; i < n; i++)

{

 scanf("%d %d", &a, &b);

 g[a].push_back(b);

 g[b].push_back(a);

}

Start the depth-first search from vertex 1.

dfs1(1, 0);

Compute in the variable s the sum of all numbers in the array weight. It equals the number of points gained if the vertex number 1 is chosen in the game first.

s = 0;

for (i = 1; i <= n; i++)

 s += weight[i];

Start the second depth-first search from vertex 1.

dfs2(1, 0, s);

Print the answer.

printf("%lld\n", res);
_1702742021.vsd
1

4

2

3

5

6

9

7

8

_1711012304.vsd

_1742144123.vsd

_1702742527.vsd
1

4

2

3

5

6

9

7

8

_1702736005.vsd
1

4

2

3

5

6

9

7

8

