11159. Breed counting
Several seasons of hot summers and cold winters have significantly damaged Farmer John's fence for n cows, which are lined up in a row and consecutively numbered from 1 to n. Each cow belongs to one of three breeds: 1 – Holsteins, 2 – Guernseys, 3 – Jerseys. Farmer John asks you to count the number of cows of each breed within a given range.

Input. The first line contains two integers n and q (1 ≤ n, q ≤ 105).

Each of the next n lines contains one integer, 1, 2, or 3, which is the breed identifier of the corresponding cow.

The following q lines describe the queries, each consisting of two integers a and b (a ≤ b).

Output. For each of the q queries (a, b), print a line containing three integers — the number of cows of each breed in the interval from a to b, inclusive.

	Sample input
	Sample output

	6 3

2

1

1

3

2

1

1 6

3 3

2 4
	3 2 1

1 0 0

2 0 1

SOLUTION
partial sums
Algorithm analysis
Let’s declare three integer arrays s[i] (1 ≤ i ≤ 3). The prefix sums for cows of breed i will be stored in the array s[i].
The answer to the query (a, b) is computed as follows:
· The number of cows of breed 1 is s[1][b] – s[1][a – 1];
· The number of cows of breed 2 is s[2][b] – s[2][a – 1];

· The number of cows of breed 3 is s[3][b] – s[3][a – 1];

Example
For the given example, the prefix sum arrays s[i] (1 ≤ i ≤ 3) will be as follows:

[image: image1.emf]211321cows

012223s[1]

111122s[2]

000111s[3]

0

0

0

123456

q (2, 4)

Consider the query on the interval (2, 4):
· The number of cows of breed 1 is s[1][4] – s[1][1] = 2 – 0 = 2;
· The number of cows of breed 2 is s[2][4] – s[2][1] = 1 – 1 = 0;

· The number of cows of breed 3 is s[3][4] – s[3][1] = 1 – 0 = 1;

Algorithm implementation
Declare an array for storing prefix sums.
#define MAX 100001

int s[4][MAX];

Read the input data.
scanf("%d %d", &n, &q);

Compute the prefix sum arrays.
memset(s, 0, sizeof(s));

for (i = 1; i <= n; i++)

{

 scanf("%d", &x);

 for (j = 1; j <= 3; j++)

 s[j][i] = s[j][i - 1];

 s[x][i]++;

}

Process the q queries sequentially.
for (i = 0; i < q; i++)

{

 scanf("%d %d", &a, &b);

 printf("%d %d %d\n", s[1][b] - s[1][a - 1], s[2][b] - s[2][a - 1],
 s[3][b] - s[3][a - 1]);

}
Python implementation
import sys
Read the input data.
n, q = map(int, input().split())
Declare a list for storing prefix sums.
s = [[0] * (n + 1) for _ in range(4)]
Compute the prefix sum arrays.
for i in range(1, n + 1):
 x = int(input())
 for j in range(1, 4):
 s[j][i] = s[j][i - 1]
 s[x][i] += 1
Process the q queries sequentially.
for _ in range(q):
 a, b = map(int, input().split())
 print(s[1][b] - s[1][a - 1], s[2][b] - s[2][a - 1],
 s[3][b] - s[3][a - 1])

_1791302484.vsd
2

1

1

3

2

1

cows

0

1

2

2

2

3

s[1]

1

1

1

1

2

2

s[2]

0

0

0

1

1

1

s[3]

0

0

0

1

2

3

4

5

6

q (2, 4)

