11270. The uncountable ways
There is a rectangle of n ⋅ m units. Another rectangle of a ⋅ b units is cut off from the upper right corner. Count the number of ways an ant can reach the bottom right corner starting from the top left corner, if it can move along the grid lines only right or down.

Input. The first line contains the number of test cases t. Each of the next t lines contains four integers n, m, a, b (2 ≤ n, m ≤ 400000, 1 ≤ a < n, 1 ≤ b < m).
Output. For each test case print on a separate line the number of ways an ant can reach the bottom right corner under the given conditions. Print the answer modulo 109 + 7.


	Sample input
	Sample output

	3

2 2 1 1

4 5 2 2

7 7 6 6
	5

105

50


SOLUTION
combinatorics
Algorithm analysis
Consider a whole (without cutouts) rectangle of size n * m. Let’s calculate the number of paths from cell (0, 0) to cell (n, m). Since the path between the specified points has a length of n + m, and at the same time contains m horizontal segments, the number of paths is equal to ways(n, m) = 
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Now consider a rectangle of size n * m with the right top cut out of size a * b.
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Let’s divide the path from (0, 0) to (n, m) into three parts:
· move from (0, 0) to (a – 1, i), where 0 ≤ i ≤ m – b;
· move from (a – 1, i) to (a, i);
· move from (a, i) to (n, m);
The number of paths from (0, 0) to (a – 1, i) is equal to ways(a – 1, i).
The number of paths from (a, i) to (n, m) is equal to ways(n – a, m – i).
Thus the number of paths from (0, 0) to (n, m) is 
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Example
Consider a 2 * 2 rectangle that has a 1 * 1 top right corner cut out. An ant has 5 ways to get from the top left to the bottom right.
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Let’s consider the second example. From a 4 * 5 rectangle cut out the upper right corner of size 2 * 2.
· Consider the number of paths from (0, 0) to (1, i), 0 ≤ i ≤ 3.

· Consider the number of paths from (2, i) to (4, 5), 0 ≤ i ≤ 3.
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The number of paths from (0, 0) to (4, 5) is
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1 * 21 + 2 * 15 + 3 * 10 + 4 * 6 = 21 + 30 + 30 + 24 = 105
Algorithm realization
Declare the constants.
#define MAX 1000001

#define MOD 1000000007

Let’s declare arrays: fact contains the factorials of numbers modulo MOD, factinv contains the reciprocals of the factorials of numbers modulo MOD:
fact[n] = n! mod 1000000007

factinv[n] = n! -1 mod 1000000007
typedef long long ll;
ll fact[MAX], factinv[MAX];

The pow function finds the power of a number by modulo: xn mod p.
ll pow(ll x, ll n, ll p)

{

  if (n == 0) return 1;

  if (n % 2 == 0) return pow((x * x) % p, n / 2, p);

  return (x * pow(x, n - 1, p)) % p;

}

The inverse function finds the inverse of x modulo p. Since the number p is prime, then by Fermat’s theorem xp-1 mod p = 1 for every 1 ≤ x < p. The equality can be rewritten as (x * xp-2) mod p = 1, whence the reciprocal of x is xp-2 mod p.
ll inverse(ll x, ll p)

{

  return pow(x, p - 2, p);

}

The function Cnk finds the binomial coefficient using the formula:
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ll Cnk(int n, int k)

{

  return ((fact[n] * factinv[k]) % MOD * factinv[n - k]) % MOD;

}

The function ways finds the number of paths on an n * m grid from cell (0, 0) to cell (n, m). Since the path between the specified points has length n + m, and at the same time contains m horizontal segments, the number of paths is equal to 
[image: image18.wmf]m

m

n

C

+

.
ll ways(int n, int m)

{

  return Cnk(n + m, m);

}

The main part of the program. Fill the arrays of factorials fact and factinv.
fact[0] = 1;

for (i = 1; i < MAX; i++)

  fact[i] = (fact[i - 1] * i) % MOD;

factinv[0] = 1;

for (i = 1; i < MAX; i++)

   factinv[i] = inverse(fact[i], MOD);

Read the input data.
scanf("%d", &tests);

while (tests--)

{

  scanf("%d %d %d %d", &n, &m, &a, &b);
Find the answer using the formula in the variable res.
  res = 0;

  for (i = 0; i <= m - b; i++)

    res = (res + ways(a - 1, i) * ways(n - a, m - i)) % MOD;

Print the answer.

  printf("%lld\n", res);

}
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