11320. Amazing trick
Alice is a magician, and she creates a new trick. She has n cards with different numbers from 1 to n written on them. First, she asks an audience member to shuffle the deck and put the cards in a row. Let the number on the i-th card from the left be ai.
Then Alice selects two permutations p and q. There is a restriction on p and q: permutations can’t have fixed points. In other words, ∀i: pi ≠ i and qi ≠ i.
Once the permutations are chosen, Alice shuffles the cards according to them. Now the i-th card from the left becomes the card a[p[q[i]]. The trick is considered successful if, after shuffling, the number on the i-th card from the left is i.
Help Alice choose the permutations p and q, or determine if it is impossible for the given starting permutation a.

Input. The first line contains the number of test cases t (1 ≤ t ≤ 105).

Each test is described in two lines. The first line contains one integer n (1 ≤ n ≤ 105) – the number of cards. The second line contains n integers ai (1 ≤ ai ≤ n, ∀i ≠ j: ai ≠ aj) – the initial permutation of the cards.

It is guaranteed that the sum of n over all tests does not exceed 105.

Output. Print the answer for each test case in the order they appear in the input.

For each test case, print “Impossible” on a single line if no solution exists.

Otherwise, print “Possible” on the first line, followed by two lines containing the permutations p and q.

	Sample input
	Sample output

	4

2

2 1

3

1 2 3

4

2 1 4 3

5

5 1 4 2 3
	Impossible

Possible

3 1 2

2 3 1

Possible

3 4 2 1

3 4 2 1

Possible

4 1 2 5 3

3 1 4 5 2

SOLUTION
combinatorics
Algorithm analysis

Let’s consider three permutations: a, p, and q. Let I be the identity permutation. Consider the equation: a(p(q(I))) = I. From this, we get p(q(I)) = a-1. Using the fact that permutations are applied from right to left, this identity can be rewritten as: p ° q = a-1. Therefore, q = p-1 ° a-1.

Generate a random permutation p that has no fixed points. Then, compute the permutation q = p-1 ° a-1 and check that it has no fixed points. The found permutations p and q are the required ones.

Example
Consider the permutation a = (5, 1, 4, 2, 3).
Its inverse will be a-1 = (2, 4, 5, 3, 1).

[image: image1.emf]3

4

5

3

4

5

permutation

a

= (5, 1, 4, 2, 3)

inverse permutation

a

-1

= (2, 4, 5, 3, 1)

1

2

1

2

3

4

5

3

4

5

1

2

1

2

Generate a random permutation p with no fixed points. For example, let p = (4, 1, 2, 5, 3). Now, let’s compute its inverse: p-1 = (2, 3, 5, 1, 4).
Next, compute q = p-1 ° a-1 = (2, 3, 5, 1, 4) ° (2, 4, 5, 3, 1) = (3, 1, 4, 5, 2). The permutation q has no fixed points, so it is valid.
Algorithm realization

The print function prints the elements of the array a, starting from the first one.
void print(vector<int>& a)

{

 for (int i = 1; i < a.size(); i++)

 printf("%d ", a[i]);

 printf("\n");

}

The function is_valid checks whether the permutation v contains any fixed points.
bool is_valid(vector<int>& v)

{

 for (int i = 1; i < v.size(); i++)

 if (v[i] == i) return false;

 return true;

}

Declare the arrays.

vector<int> a, p, p1, q;

The main part of the program. Read the input data.

scanf("%d", &tests);

while (tests--)

{

 scanf("%d", &n);
Initialize the arrays.

 a.resize(n + 1);

 p1.resize(n + 1);

 p.resize(n + 1);

 q.resize(n + 1);

Read the input permutation a and immediately store its inverse in the array a. That is, the array a contains the permutation a-1, where a is the input permutation.
 for (i = 1; i <= n; i++)

 {

 scanf("%d", &x);

 a[x] = i;

 }

mt19937 is one of the standard pseudorandom number generators in C++ (Mersenne Twister with a period of 19937). It is very fast and has good statistical properties, making it an excellent choice for most tasks requiring random number generation.

 mt19937 gen(random_device{}());
In the variable found, we’ll mark whether a solution is found for the current test.
 found = false;

Perform 1000 iterations.

 for (it = 0; it < 1000; it++)

 {
Generate a random permutation. To do this, populate the array p with the numbers 0, 1, 2, …, and use the shuffle function to shuffle the elements, starting from the first (non-zero) element. We work with permutations from 1 to n.
 iota(p.begin(), p.end(), 0);

 shuffle(p.begin() + 1, p.end(), gen);
Check whether the permutation p is valid (i.e., it contains no fixed points).
 if (!is_valid(p)) continue;

Compute the permutation p1 = p-1.
 for (i = 1; i <= n; i++)

 p1[p[i]] = i;
Compute the permutation q = p1 ° a-1 = p-1 ° a-1.
 for (i = 1; i <= n; i++)

 q[i] = p1[a[i]];

If the permutation q is valid, print the result.
 if (is_valid(q))

 {

 puts("Possible");

 print(p);

 print(q);

 found = true;

 break;

 }

 }
If no solution is found after 1000 iterations, then no solution exists.
 if (!found) puts("Impossible");

}

_1787905303.vsd
3

4

5

3

4

5

permutation
a = (5, 1, 4, 2, 3)

3

4

5

3

4

5

inverse permutation
a-1 = (2, 4, 5, 3, 1)

1

2

1

2

1

2

1

2

