11340. Radio 106 FM
You are given a list of songs that are played on Radio 106 FM. The list contains a total of n songs. Find the length of the longest fragment of the list that consists of non-repeating songs.

Input. The first line contains the number of songs n (1 ≤ n ≤ 105) in the list. The second line contains n integers k1, k2, ..., kn (1 ≤ ki ≤ 109), which are the identification numbers of the songs.

Output. Print the length of the longest fragment of the list that consists of unique songs.

	Sample input 1
	Sample output 1

	8

1 2 1 3 2 7 4 2
	5

	
	

	Sample input 2
	Sample output 2

	4

1 1 2 1
	2

SOLUTION
data structures - set
Algorithm analysis
Let the array v store the identification numbers of the songs. Using two pointers, we will maintain a sliding window [i; j] in which the songs do not repeat. In other words, all the songs in the segment [i; j] are unique. The songs from this segment will be stored in a set s. For each value of i, we will try to extend the segment to the maximum possible length. That is, for a fixed i, we will search for such a j that in the segment [i; j] the songs do not repeat, but in the segment [i; j + 1] duplicates already appear.
When processing the current song at index j + 1, there are two possible cases:
· If the song vj+1 is not present in the segment [i; j], add it to this segment, extending it to [i; j + 1];
· If the song vj+1 is already present in the segment, shift the left boundary i to the right until vj+1 disappears from the segment [i; j]. Then, add vj+1 to the segment, extending it to [i; j + 1]. With each shift of i, remove the corresponding elements from the set s;
Among all possible segments [i; j] with unique songs, find the maximum length. This will be the answer to the problem.
Example
Let’s consider how the segments with unique songs will change for the first example.

[image: image1.emf]1 2 1 3 2 7 4 2 s = {1, 2}

1 2 1 3 2 7 4 2 s = {1, 2, 3}

1 2 1 3 2 7 4 2 s = {1, 2, 3, 4, 7}

1 2 1 3 2 7 4 2 s = {2, 4, 7}

The length of the longest segment is 5.
Algorithm realization
Read the input data. The identification numbers of the songs are stored in the array v.
scanf("%d", &n);

v.resize(n);

for (i = 0; i < n; i++)

 scanf("%d", &v[i]);

Maintain the segment [i; j – 1] of unique songs (i.e., the songs from vi to vj-1 do not repeat). In the set s, store the identification numbers of the songs from this segment. The variable res tracks the length of the longest fragment with unique songs.
i = res = 0;
for (j = 0; j < n; j++)

{
Consider the current song at index j. If it is already in the set s, it will not be possible to extend the current segment [i; j – 1] by including the j-th song. In this case, we need to shift the left boundary i, removing the song vi from the set s, until the j-th song disappears from the set s.
 while (s.find(v[j]) != s.end())

 {

 s.erase(v[i]);

 i++;

 }

Add the j-th song to the segment and, accordingly, to the set s. Thus, the segment [i; j] will not contain any repeated songs.
 s.insert(v[j]);
Among all possible segments [i; j], find the longest one. The length of the segment [i; j] is j – i + 1.

 res = max(res, j - i + 1);

}

Print the answer.

printf("%d\n", res);

_1789409234.vsd
1

2

1

3

2

7

4

2

s = {1, 2}

1

2

1

3

2

7

4

2

s = {1, 2, 3}

1

2

1

3

2

7

4

2

s = {1, 2, 3, 4, 7}

1

2

1

3

2

7

4

2

s = {2, 4, 7}

