11539. Name generator
It is quite difficult to come up with a name for a task in Polygon (a system for preparing tasks). That is why it was necessary to automate this process by developing a name generator.

The name of any task should consist of three parts (listed in order): prefix, separator – symbol “_” (underscore) and suffix. Examples of task names: “amazing_pascal”, “clever_einstein”, “magical_tesla”. Prefix and suffix – words consisting only of lowercase letters of the Latin alphabet, with the prefix chosen only from words in the prefix dictionary and the suffix – in the suffix dictionary.

You have been given n of words in the prefix dictionary and m of words in the suffix dictionary. You have also been given k integers qi – the numbers of titles to generate. To generate a title numbered qi, you need to find the qi-th title (numbering starts at 1), among all possible n × m titles sorted in lexicographic order.

Input. The first line contains three integers n, m and k (1 ≤ n, m, k ≤ 105) – respectively the size of the prefix dictionary, the size of the suffix dictionary and the number of names to be generated.

Each of the following n lines contains the string ai (1 ≤ |ai| ≤ 16) – a word from the prefix dictionary consisting of only lowercase letters of the Latin alphabet. It is guaranteed that all words in the prefix dictionary are distinct.

Each of the following m lines contains the string bi (1 ≤ |bi| ≤ 16) – a word from the suffix dictionary consisting of only lowercase letters of the Latin alphabet. It is guaranteed that all words in the suffix dictionary are distinct.

The next line gives k integers qi (1 ≤ qi ≤ n ⋅ m) – the numbers of names to be generated.

The entry |x| here denotes the length of the string x.

Output. Print k lines. In the i-th line print the name of the task under the number qi.

Examples. A string s is lexicographically smaller than a string t if and only if there exists p such that si = ti for i < p and sp < tp (or p > |s|, p ≤ |t|).

Note. The “_” character is lexicographically smaller than any lowercase letter.

	Sample input
	Sample output

	3 3 6

amazing

clever

magical

pascal

einstein

tesla

1 4 9 3 8 6
	amazing_einstein

clever_einstein

magical_tesla

amazing_tesla

magical_pascal

clever_tesla

SOLUTION
ххх
Анализ алгоритма

Если.

Пример

На.

Реализация алгоритма

Функция.
