11609. Finding pairs
You are given a rooted tree with n nodes and node 11 as a root. There is a unique path between any two nodes. Here, d(i, j) is defined as a number of edges in a unique path between nodes i and j.

You have to find the number of pairs (i, j) such that d(i, j) = d(i, 1) – d(j, 1).

Input. The first line contains the number of the nodes n (1 ≤ n ≤ 105) in the tree. Each of the next n – 1 lines denotes the edge of the tree.

Output. Print a single integer denoting the number of pairs (i, j) such that d(i, j) = d(i, 1) – d(j, 1).

	Sample input
	Sample output

	5

1 2

2 3

2 4

4 5
	13

SOLUTION
graphs – depth first search
Algorithm analysis
The condition d(i, j) = d(i, 1) – d(j, 1) is valid for any pair (i, j) for which j is the ancestor of i in a depth first search from the node 1. Consider an example:

[image: image1.emf]1

2

346

5

1

2

23

3

4

vh[v]

· d(4, 1) = 2, d(4, 1) – d(1, 1) = 2 – 0 = 2;
· d(6, 3) = 2, d(6, 1) – d(3, 1) = 3 – 1 = 2;
· d(2, 2) = 0, d(2, 1) – d(2, 1) = 1 – 1 = 0;
· d(6, 1) = 3, d(6, 1) – d(1, 1) = 3 – 0 = 3;
The depth h[v] of a vertex v is the number of vertices on the path from 1 to v. In the figure, the depth is indicated near each vertex. Let us fix vertex i and answer the question: how many vertices j exist such that d(i, j) = d(i, 1) – d(j, 1).
For example, for i = 6 there are 4 such vertices: j = 1, 3, 4, 6. Note that h[6] = 4. For a fixed value of i, there are exactly h[i] corresponding values of j.
To solve the problem, for each vertex v of the tree, find its depth h[v] and compute the sum of the depths over all vertices.
Example
Consider the graph from a sample. Near each vertex its depth is written.

[image: image2.emf]12

3

45

1

2

3

3

4

The sum of the depths of all vertices is 1 + 2 + 3 + 3 + 4 = 13.
Algorithm realization
Declare the adjacency list of the graph g. Store the depth of the vertices in the array h.
vector<vector<int> > g;

vector<int> h;

The function dfs for each vertex v computes its depth. The parent of v is the vertex p.

int dfs(int v, int p)

{

 for (int to : g[v])
Process the edge (v, to). If to is not a parent of v, then we compute the depth of to and run a depth first search from to.

 if (to != p)

 {

 h[to] = h[v] + 1;

 dfs(to, v);

 }

 return h[v];

}

The main part of the program. Read the number of vertices n in the tree.

scanf("%d", &n);

g.resize(n + 1);

Construct a tree.

for (i = 2; i <= n; i++)

{

 scanf("%d %d", &a, &b);

 g[a].push_back(b);

 g[b].push_back(a);

}

Let the height of the vertex 1 be equal to 1.

h.resize(n + 1);

h[1] = 1;
Start a depth first search from the vertex 1.

dfs(1, -1);

Compute the answer – the sum of the depths of all vertices.

res = 0;

for (i = 1; i <= n; i++)

 res += h[i];

Print the answer.

printf("%lld\n", res);

_1762102686.vsd
6

1

2

3

4

5

1

2

2

3

3

4

v

h[v]

_1762101506.vsd
1

2

3

4

5

1

2

3

3

4

