11720. Jim and the Skyscrapers
Given an array h1, h2, ..., hn. Count the number of pairs of indices (i, j) (1 ≤ i < j ≤ n) such that the following conditions hold: hi = hj and
[image: image1.wmf]j

k

j

k

i

h

h

£

<

<

max

.
Input. The first line contains one integer n (1 ≤ n ≤ 3 ⋅ 105). The second line contains n integers h1, h2, ..., hn (1 ≤ hi ≤ 106).
Output. Print the number of pairs of indices that satisfy the given conditions.
	Sample input 1
	Sample output 1

	6

3 2 1 2 3 3
	4

	
	

	Sample input 2
	Sample output 2

	10

5 3 5 3 2 3 1 3 5 5
	9

SOLUTION
stack
Algorithm analysis
Imagine that we are building “walls” out of blocks of the same height.
A pair (i, j) forms a “corridor” if there is no taller block between these walls.

To solve the problem, we’ll use a monotone stack. The stack stores pairs (value, count):

· value – the height of the wall (the value h[i]).

· count – the number of consecutive elements of this height that have already appeared and can form pairs with future elements of the same height.
That is:
· For each “block of identical numbers”, we remember only two parameters: the number itself and how many times it has appeared consecutively so far.
· When a new element appears, we can immediately determine how many pairs it forms: this number is exactly count for the element at the top of the stack.
For example, let the current number be a = 5, and suppose it has already appeared 3 times (that is, the current occurrence of a = 5 is the fourth one). Assume that between all these occurrences of a there are only smaller elements. Then the number of new index pairs (i, j), where j is the current index and the condition hi = hj = a holds, will be 3.

[image: image2.emf]5

3

2

5 5

4

2 2

5

1 2 3 4 5 6 7 8 9

(1, 9)

(4, 9)

(6, 9)

When processing the next number hi:

· If the number at the top of the stack is less than hi​, remove it from the stack.
· If the number at the top of the stack is equal to hi and it has appeared previously x times, increase the target count of index pairs by x and update the number of occurrences of hi to x + 1.
· If the stack is empty or the number at the top of the stack is greater than hi, push the pair (hi, 1) onto the stack. This means that the current value hi appears for the first time (it may have appeared earlier in the input sequence but was removed from the stack due to a larger element).
Example
Consider the first test case.

[image: image3.emf]3

2

1

2

3 3

1 2 3 4 5 6

(3, 1) (3, 1)

(2, 1)

(3, 1)

(2, 1)

(1, 1)

стек

res

0 0 0

(3, 1)

(2, 2)

1

(3, 2)

2

(3, 3)

4

Algorithm implementation
Read the input data.
scanf("%d", &n);

vector<int> v(n);

for (i = 0; i < n; ++i)

 scanf("%d", &v[i]);

Store the number of found index pairs in the variable res.
res = 0;
Declare a stack of pairs.
stack<pair<int, int>> st;

Process all the numbers of the array sequentially.
for (i = 0; i < v.size(); i++)

{
While the number at the top of the stack is less than v[i], remove it from the stack.
 while (!st.empty() && st.top().first < v[i])

 st.pop();

If the number at the top of the stack is equal to v[i] and it has appeared previously x times (the value x is stored in st.top().second), increase the answer res by x. Then update the number of occurrences of v[i] to x + 1.
 if (!st.empty() && v[i] == st.top().first)

 {

 res += st.top().second;

 st.top().second += 1;

 }

 else
If v[i] appears for the first time, push the pair (v[i], 1) onto the stack.
 st.push({ v[i], 1 });

}

Print the answer.
printf("%lld\n", res);

_1788007848.vsd
5

3

2

5

5

4

2

2

5

1

2

3

4

5

6

7

8

9

(1, 9)

(4, 9)

(6, 9)

_1788167630.vsd
3

2

1

2

3

3

(3, 1)

(3, 1)

(2, 1)

1

2

3

4

5

6

(3, 1)

(2, 1)

(1, 1)

стек

0

res

0

0

(3, 1)

(2, 2)

(3, 2)

1

2

(3, 3)

4

_1788006175.unknown

