11726. Bernoulli scheme
There are n independent trials. The probability of event A occurring in each trial is p. Find the probability that in n independent trials, the random event A occurs exactly k times.

Input. The first line contains two integers n (0 < n ≤ 15) and k (0 ≤ k ≤ n).
The second line contains a real number p (0 ≤ p ≤ 1).

Output. Print the probability that in n independent trials, the random event A occurs exactly k times. The answer should be printed with a precision of at least 6 decimal places.

	Sample input 1
	Sample output 1

	8 2

0.3
	0.296475

	
	

	Sample input 2
	Sample output 2

	10 3

0.5
	0.117188

SOLUTION
probability
Algorithm analysis
A Bernoulli trial is an experiment with two possible outcomes:

· Success (the event occurs) with probability p,

· Failure (the event does not occur) with probability 1 – p.

A trial is called “Bernoulli” if it is independent and the probability of success remains constant throughout all trials.

The Bernoulli trial scheme is a series of independent trials, each of which is a Bernoulli trial. Let the number of trials be denoted by n. In each trial, the probability of success is p and the probability of failure is 1 – p, and these probabilities remain constant.

An example could be repeatedly flipping a coin. If we are interested in how many times heads will appear out of n flips, this would represent a Bernoulli trial scheme.

The number of successes in a series of n Bernoulli trials follows a binomial distribution. Let X be a random variable representing the number of successes in n trials. Then:

P(X = k) =
[image: image1.wmf]k

n

k

k

n

p

p

C

-

-

×

×

)

1

(

where
· p is the probability of success in each trial,

· k is the number of successes out of n trials.
To compute the value of the binomial coefficient with real numbers, we will use the following approach:

[image: image2.wmf])!

(

!

!

k

n

k

n

C

k

n

-

=

,

[image: image3.wmf])!

ln(

!

ln

!

ln

ln

k

n

k

n

C

k

n

-

-

-

=

It is known that ln n! = ln (1 * 2 * … * n) = ln 1 + ln 2 + … + ln n
Store the values of ln i! in the cells of an array lf[i]. Then we calculate
res = ln n! – ln k! – ln (n – k)! = lf[n] – lf[k] – lf[n – k],

After that

[image: image4.wmf]res

k

n

e

C

=

Example
In the first test, n = 8 trials are conducted. The probability of event A occurring in each trial is p = 0.3. We want to find the probability that event A occurs exactly k = 2 times. The desired probability is:
P(X = 2) =
[image: image5.wmf]6

2

2

8

7

.

0

3

.

0

×

×

C

 ≈ 0.296475
Algorithm realization
Declare an array lf, where lf[i] = ln i! = ln 1 + ln 2 + … + ln i.
#define MAX 1001

double lf[MAX];
Read the input data.
scanf("%d %d", &n, &k);

scanf("%lf", &p);

q = 1 - p;

Fill the array lf.
lf[1] = 0;

for (i = 2; i <= n; i++)

 lf[i] = lf[i - 1] + log(i);

Compute the value of the binomial coefficient res =
[image: image6.wmf]k

n

C

.
res = lf[n] - lf[k] - lf[n - k];

res = exp(res);

Compute the answer res =
[image: image7.wmf]k

n

k

k

n

p

p

C

-

-

×

×

)

1

(

.
for (i = 0; i < k; i++)

 res = res * p;

for (i = 0; i < n - k; i++)

 res = res * q;

Print the answer.

printf("%lf\n", res);
_1790088583.unknown

_1790090706.unknown

_1790091145.unknown

_1790088739.unknown

_1790088299.unknown

_1790088037.unknown

