11865. Baku Metro
The Baku Metro is one of the oldest and most unique in the region. The first line was opened in 1967, and today the network includes dozens of stations, such as “28 May”, “Icheri Sheher”, “Nizami”, and others. One of the distinctive features of the Baku metro is its deep, mosaic-decorated stations and the presence of transfer hubs. In recent years, there has been an active discussion about the construction of a circular line that would connect central and peripheral areas of the city.

As part of the capital's metro modernization project, an abstract model of the metro network was developed, consisting of n stations and n tunnels between them. Each tunnel connects exactly two stations and does not intersect any others. Moreover, it is possible to travel from any station to any other by moving along the tunnels. All tunnels are bidirectional, and there is at most one direct connection between any pair of stations.

Mathematicians in Baku have proven a theorem: in any such metro scheme, there exists exactly one cycle. In other words, a circular line can be found – a route passing through several stations, where any two neighboring stations are connected by a tunnel, and no station appears more than once.

This discovery caused a real sensation in the city: residents began to compare the distances of their stations to the circular line. One might say: “I live three stations from the circle”, while another boasts, “Only one for me.” Mobile apps even appeared to calculate the distance of a station from the ring line (with a paid subscription, of course).

To take control of the situation, the Baku Metro Administration tasked you with developing a program that, given a map of the metro network, calculates for each station the minimum number of stations needed to reach the circular line. For stations on the circular line, the distance is considered to be zero.

Input. The first line contains an integer n (3 ≤ n ≤ 3000) – the number of stations in the metro network (which also equals the number of tunnels). The next n lines each describe one tunnel. Each line contains a pair of integers xi, yi (1 ≤ xi, yi ≤ n), indicating a tunnel between stations xi and yi.

Stations are numbered from 1 to n in arbitrary order.

It is guaranteed that xi ≠ yi​, there is at most one tunnel between any pair of stations, and all tunnels are bidirectional. It is also guaranteed that the given metro map is classical – that is, connected and contains exactly one cycle.

Output. Print n integers: the i-th number should represent the distance from the i-th station to the circular line. For stations that are on the circular line, print 0.

	Sample input 1
	Sample output 1

	5

1 2

1 4

5 3

5 2

3 4
	0 0 0 0 0

	
	

	Sample input 2
	Sample output 2

	6

1 2

2 3

2 5

3 5

3 4

6 4
	1 0 0 1 0 2

SOLUTION
breadth first search
Algorithm analysis

A connected undirected graph with n vertices and n edges is given. The graph contains exactly one cycle. For each vertex, it is required to determine the shortest distance to the nearest vertex that lies on the cycle. If the vertex itself is part of the cycle, the distance is considered to be 0.

The graph can be thought of as a single cycle with tree-like branches (i.e., acyclic subgraphs) attached to it. To identify the vertices that belong to the cycle, we use a leaf removal process (removing vertices of degree 1 step by step):

· While there are vertices of degree 1 in the graph, remove them.
· When no such vertices remain, the remaining vertices form the cycle.
This process resembles a reverse topological sort: we iteratively remove the leaves until only the “inner” vertices remain – these are precisely the ones that make up the cycle.

Next, perform a breadth-first search starting simultaneously from all vertices of the cycle. In this way, for each remaining vertex, we compute the minimum number of steps (transitions) needed to reach the nearest vertex on the cycle.

Example
In the first example, all vertices are part of a single cycle, so the distance for each of them is 0.
In the second example, the cycle consists of vertices 2, 3, and 5, while the remaining vertices are located at some distance from it.

[image: image1.emf]1

24

35

0

0

0

0

0

23

5

1

4

6

0

0

0

1

1

2

Algorithm implementation
Declare the adjacency list g for the graph, as well as the following auxiliary arrays:
· used – stores the state of each vertex (whether it has been removed or is part of the cycle);
· dist – stores the distance from each vertex to the nearest vertex that lies on the cycle;
· deg – stores the degree of each vertex (i.e., the number of adjacent vertices).
vector<vector<int> > g;

vector<int> used, dist, deg;

queue<int> q;

Read the input data and construct the graph.
scanf("%d", &n);

g.resize(n + 1);

for (i = 0; i < n; i++)

{

 scanf("%d %d", &a, &b);

 g[a].push_back(b);

 g[b].push_back(a);

}

Compute the degree of each vertex. Vertices with degree 1 are added to the queue q.
used.resize(n + 1, 0);

deg.resize(n + 1, 0);

for (i = 1; i <= n; i++)

{

 deg[i] = g[i].size();

 if (deg[i] == 1)

 {

 q.push(i);

 used[i] = 1;

 }

}

Next, perform a breadth-first search, starting simultaneously from all vertices of degree 1. During the traversal, the vertices that do not belong to the cycle will be marked as visited – they are gradually “pruned” from the graph like leaves.
while (!q.empty())

{

 int v = q.front(); q.pop();

 for (int to : g[v])

 if (used[to] == 0)

 {

 deg[to]--;
The BFS continues from a vertex to only if its degree becomes equal to 1 – meaning it has turned into a new leaf.

 if (deg[to] == 1)

 {

 q.push(to);

 used[to] = 1;

 }

 }

}

At this point, the value used[i] = 0 only if vertex i belongs to the cycle. Now we add all cycle vertices to the queue q. We also initialize the dist array, which will store the shortest distances from each vertex to the nearest vertex on the cycle.
dist = vector<int>(n + 1, -1);

q = queue<int>();

for (i = 1; i <= n; i++)

 if (used[i] == 0)

 {

 q.push(i);

 dist[i] = 0;

 }

Perform a breadth-first search, starting from the vertices already in the queue q – these are the vertices that belong to the cycle. During the traversal, compute the distances from the cycle to all other vertices in the graph.
while (!q.empty())

{

 int v = q.front(); q.pop();

 for (int to : g[v])

 if (dist[to] == -1)

 {

 q.push(to);

 dist[to] = dist[v] + 1;

 }

 }

Print the answer.

for (i = 1; i <= n; i++)

 printf("%d ", dist[i]);

printf("\n");

_1814527274.vsd
1

2

4

3

5

0

0

0

0

0

2

3

5

1

4

6

0

0

0

1

1

2

