1205. Power of Cryptography
Given an integer n  1 and an integer p  1 you are to write a program that determines 
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, the positive n - th root of p. There always exists such integer k that kn = p.
Input. Consists of two numbers n and p (1  n  300, 1  p < 10101). It is known that there always exists an integer k (1 ≤ k ≤ 109) such that kn = p.
Output. Print the value 
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, i.e. the number k such that kn = p.
Sample input
7 4357186184021382204544
Sample output

1234
SOLUTION
mathematics
Algorithm analysis
It is known that 
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. Subject to the constraints on numbers n, p and k just use double type for their declaration and calculate the value of [image: image7.wmf]p
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. In C language it will be written  as exp(log(p)/n).
Example
For the given test we have 
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 = 1234.
Algorithm realization

Read the values of n and p, calculate and print 
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.

scanf("%lf %lf",&n,&p);

res = exp(log(p)/n);

printf("%.0lf\n",res);
Java realization
import java.util.Scanner;
public class Main
{
  public static void main(String[] args)
  {
    Scanner con = new Scanner(System.in);
    double n = con.nextDouble();
    double p = con.nextDouble();
    double res = Math.pow(p,1/n);
    System.out.println((int)(res+0.5));
  }
}
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