1205. Power of Cryptography
Given an integer n 1 and an integer p 1 you are to write a program that determines
[image: image1.wmf]n

p

, the positive n - th root of p. There always exists such integer k that kn = p.
Input. Consists of two numbers n and p (1 n 300, 1 p < 10101). It is known that there always exists an integer k (1 ≤ k ≤ 109) such that kn = p.
Output. Print the value
[image: image2.wmf]n

p

, i.e. the number k such that kn = p.
Sample input
7 4357186184021382204544
Sample output

1234
SOLUTION
mathematics
Algorithm analysis
It is known that
[image: image3.wmf]n

p

 =
[image: image4.wmf]n

p

1

 =
[image: image5.wmf]n

p

e

1

ln

 = [image: image6.wmf]p

n

e

ln

1

. Subject to the constraints on numbers n, p and k just use double type for their declaration and calculate the value of [image: image7.wmf]p

n

e

ln

1

. In C language it will be written as exp(log(p)/n).
Example
For the given test we have
[image: image8.wmf]7

44

0213822045

4357186184

 = 1234.
Algorithm realization

Read the values of n and p, calculate and print
[image: image9.wmf]n

p

.

scanf("%lf %lf",&n,&p);

res = exp(log(p)/n);

printf("%.0lf\n",res);
Java realization
import java.util.Scanner;
public class Main
{
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 double n = con.nextDouble();
 double p = con.nextDouble();
 double res = Math.pow(p,1/n);
 System.out.println((int)(res+0.5));
 }
}
_1177091355.unknown

_1177091357.unknown

_1177091359.unknown

_1177091360.unknown

_1177091358.unknown

_1177091356.unknown

_1177091353.unknown

