1228. Add All
The cost of adding two numbers equals to their sum. For example to add 1 and 10 cost 11. The cost of addition 1 and 2 is 3. We can add numbers in several ways:

· 1 + 2 = 3 (cost = 3), 3 + 3 = 6 (cost = 6), Total = 9

· 1 + 3 = 4 (cost = 4), 2 + 4 = 6 (cost = 6), Total = 10

· 2 + 3 = 5 (cost = 5), 1 + 5 = 6 (cost = 6), Total = 11

We hope you understood the task. You must add all numbers so that the total cost of summation will be the smallest.

[image: image1.emf]1 2 3

3

6

3

6

9

1 2 3

6 4

6

10

4

3 2 1

5

6

5

6

11 Total cost Total cost Total cost

Input. First line contains positive integer n (2 ≤ n ≤ 105). Second line contains n nonnegative integers, each no more than 105.
Output. Print the minimum total cost of summation.
	Sample input
	Sample output

	4

1 2 3 4
	19

SOLUTION
greedy
Algorithm analysis
Add the smallest two numbers each time. Then the total cost of summation for all n integers will be the minimum. Since numbers can be repeated, will store them in a multiset.
Example
To minimize the cost of addition, add the numbers in the following order:
1. Add 1 and 2, sum is 3. Cost of addition is 3.

2. Add 3 and 3, sum is 6. Cost of addition is 6.

3. Add 4 and 6, sum is 10. Cost of addition is 10.

[image: image2.emf]1 2 3 4 3 3 4

3 6

4 6

10

Total cost of summation is 3 + 6 + 10 = 19.
Algorithm realization
Store the input numbers in the multiset s (numbers can be repeated). The two smallest numbers are always at the beginning of the multiset.
multiset<long long> s;
Read the amount of numbers n. Read the sequence of terms and push them into the multiset s.
scanf("%lld",&n);

s.clear();

for(i = 0; i < n; i++)

 scanf("%lld",&num),s.insert(num);

Accumulate the cost of additions in the variable res. Until there is only one number left (the size of the multiset s is greater than 1), add the two smallest numbers and insert their sum into s. The cost of adding numbers a and b is a + b.
res = 0;

while(s.size() > 1)

{

 a = *s.begin(); s.erase(s.begin());

 b = *s.begin(); s.erase(s.begin());

 s.insert(a + b);

 res += a + b;

}
When there is only one number left in the multiset, print the answer – the value of the res variable.
printf("%lld\n",res);

Algorithm realization – priority queue
Declare a priority queue pq, at the beginning of which there is a smallest element.
priority_queue<long long, vector<long long>, greater<long long> > pq;
Read the amount of numbers n. Read a sequence of terms and insert them into priority queue pq.
scanf("%lld",&n);

for(res = i = 0; i < n; i++)

 scanf("%lld",&num), pq.push(num);

Accumulate the cost of additions in the variable res. Until there is one number left (the size of the queue pq is greater than 1), add the two smallest numbers and insert their sum into pq. The cost of adding numbers a and b is a + b.
while(pq.size() > 1)

{

 a = pq.top(); pq.pop();

 b = pq.top(); pq.pop();

 pq.push(a + b);

 res += a + b;

}
When there is only one number left in the queue, print the answer – the value of the variable res.
printf("%lld\n",res);

Java realization
import java.util.*;
public class Main
{
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 int n = con.nextInt();
 PriorityQueue<Long> pq = new PriorityQueue<Long>();
 for(int i = 0; i < n; i++)
 {
 long val = con.nextLong();
 pq.add(new Long(val));
 }
 long Result = 0;
 while(pq.size() > 1)
 {
 long a = pq.poll();
 long b = pq.poll();
 pq.add(a + b);
 Result += a + b;
 }
 System.out.println(Result);
 }
}
Python realization
from queue import PriorityQueue
q = PriorityQueue()
n = int(input())
lst = map(int,input().split())
for x in lst:
 q.put(x)
res = 0
while q.qsize() > 1:
 a = q.get()
 b = q.get()
 q.put(a + b)
 res += a + b
print(res)

_1663788418.vsd
1

2

3

3

6

3

6

9

1

2

3

3

6

4

6

10

4

2

1

5

6

5

6

11

Total cost

Total cost

Total cost

_1658159991.vsd
1

2

3

4

3

3

4

3

6

4

6

10

