1283. Banking reform
According to unconfirmed rumors the banking reform is approaching, and you decide to make for it some proposals – and what if they suddenly will be accepted, and even you will be payed for these ideas?

Your idea is to change the denominations in coin circulation. By your opinion, it should be coins 1, 5, 10, 25 and 50 and how to call the petty cash – let the central bank decides.

However, the Central Bank has immediately demanded you to provide information about how many ways are there to represent in cash the given amount of money up to 7489 inclusive. Why up to this amount? And how the bank will name them? But who knows: the bankers have their quirks, we also name them for simplicity, just coins.

For example, an amount of 11 units can be represented in the form 10 * 1 coin + 1 * 1 coin, or 5 * 2 coins + 1 * 1 coin, or 5 * 1 coin + 1 * 6 coins or 11 * 1 coin, i.e. total in four ways.

Your task is to write a program to count the number of ways – to quickly respond to any request from the bankers.

Input. Each line contains one positive integer – the next bank request.
Output. For each request print on a separate line the required number of ways to provide a specified amount.
	Sample input
	Sample output

	11

5

26
	4

2

13

SOLUTION
dynamic programming
Algorithm analysis
Let f(k, n) be the number of ways to make up the sum n using the first k denominations of coins. It equals to the number of ways to make up the sum of n using the first (k – 1) denominations only (that is, without using the k-th denomination) plus the number of ways to make up the sum (n – ak) using k denominations. We have the relation:
f(k, n) = f(k – 1, n) + f(k, n – ak)

[image: image1.emf]f(k,n –a

k

)k

0

0n

f(k –1,n)

n -a

k

f(k,n)

Initially set f(0, 0) = 1, f(0, n) = 0, n > 0.

Example
The sum s = 11 can be represented in 4 ways:

1) 10 + 1

2) 5 + 5 + 1

3) 5 + 1 + 1 + 1 + 1 + 1 + 1

4) 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

	
	k \ n
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	start
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	c = 1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	c = 5
	2
	1
	1
	1
	1
	1
	2
	2
	2
	2
	2
	3
	3

	c = 10
	3
	1
	1
	1
	1
	1
	2
	2
	2
	2
	2
	4
	4

The denominations of 25 and 50 cents will not affect the result for the amount of 11 cents.
For example, consider the equality f (2, 10) = f (1, 10) + f (2, 5). It means that the number of ways to represent number 10 using two denominations of coins 1 and 5 includes:
· f(1, 10) = 1, number of ways to represent 10 with one denomination 1 (10 = 1 + 1 + 1 + … + 1).
· f(2, 5) = 2, number of ways to represent 5 with two denominations 1 and 5 (5 = 1 + 1 + 1 + 1 + 1 and 5 = 5).
Algorithm realization
Declare the arrays.
#define MAX 7500

long long mas[MAX];

int coins[11] = {1,5,10,25,50};

The main part of the program.

memset(mas,0,sizeof(mas)); mas[0] = 1;

for(i = 0; i < 5; i++)

{

 for(j = coins[i]; j < MAX; j++)

 mas[j] += mas[j - coins[i]];

}

Read the input data and print the result.
while(scanf("%d",&n) == 1)

 printf("%d\n",mas[n]);

Algorithm realization – recursion with memoization
#include <stdio.h>
#include <string.h>
int i, j, n;

int dp[6][7500];

int a[6] = { 0,1,5,10,25,50 };

int f(int k, int n)

{

 if (k == 0 && n == 0) return 1;

 if (k == 0 || n < 0) return 0;

 if (dp[k][n] != -1) return dp[k][n];

 return dp[k][n] = f(k - 1, n) + f(k, n - a[k]);

}

int main(void)

{

 memset(dp, -1, sizeof(dp));

 while (scanf("%d", &n) == 1)

 printf("%d\n", f(5, n));

 return 0;

}

Java realization
import java.util.*;
public class Main
{
 static int dp[][] = new int[6][7500];
 static int a[] = {0,1,5,10,25,50};
 static int f(int k, int n)
 {
 if (k == 0 && n == 0) return 1;
 if (k == 0 || n < 0) return 0;
 if (dp[k][n] != -1) return dp[k][n];
 return dp[k][n] = f(k - 1, n) + f(k, n - a[k]);
 }
 public static void main(String []args)
 {
 Scanner con = new Scanner(System.in);
 for(int i = 0; i < 6; i++)
 for(int j = 0; j < 7500; j++)
 dp[i][j] = -1;
 while(con.hasNext())
 {
 int n = con.nextInt();
 System.out.println(f(5,n));
 }
 con.close();
 }
}
_1665746991.vsd
k

0

0

n

f(k – 1,n)

n - ak

f(k,n – ak)

f(k,n)

