1303. Ultra-QuickSort
In this problem you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence

9 1 0 5 4

Ultra-QuickSort produces the output

0 1 4 5 9

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input. Consists of several test cases. The first line of each test case contains the length of the input sequence n (n ≤ 500,000). Each of the following n lines contains a single integer ai (0 ≤ ai ≤ 999,999,999), the i-th input sequence element. The last test case contains n = 0 and is not processed.
Output. For every input sequence print a single line containing an integer number op – the minimum number of swap operations necessary to sort the given sequence.
	Sample input
	Sample output

	5

9

1

0

5

4

3

1

2

3

0
	6

0

SOLUTION
sort - merge sort
Algorithm analysis

The minimum number of swaps required to sort the given sequence equals to the number of inversions in the input sequence. The desired number of inversions can be found in time O(nlog2n) simulating the merge sort.
Consider the merging process of two arrays A = (a1, …, an) and B = (b1, …, bm). Let the parts A = (a1, …, ai-1) and B = (b1, …, bj-1) are already merged, and currently we compare the numbers ai and bj. Let ai > bj, and the element bj is moved to the merged array. Then we claim that bj makes inversions only with elements ai, …, an, and the number of such inversions is exactly n – i + 1.

[image: image1.emf]a

i

b

j

b

j

merge(a,b)

a

n

a

1

b

1

b

m

invertions

Example
Count the number of inversions in the first and in the second example.

[image: image2.emf]91054

6 inversions

123

0 inversions

Let’s simulate the merge sort from the first example. Inversions are counted during the merge operation. Near each sequence obtained after merge operation, we give the number of inversions formed by the elements of the merged subsequences.

[image: image3.emf]9

1

0

5

4

9

1

0

5

4

9

1

0

5

4

9

1

0

4

5

1

9

0

1

9

0

1

4

5

9

1

2

1

2

91054

910 54

91054

910 45

19

019

01459

1

2

1

2

Algorithm realization

Input sequence will be stored in the array m.
int *m;
Merge the sorted arrays a[bL] ... a[bR] and a[cL] ... a[cR] into a[bL] ... a[cR]. Note that we always have bR + 1 = cL. For merging we use an additional array res.
void merge(int *a, int bL, int bR, int cL, int cR)
{

Put to len the number of elements being merged. Create an array res (a buffer), into which the elements will be merged.

 int i = 0, Left = bL, len = cR - bL + 1;

 int *res = new int[len];

The currently viewed position in the first sequence is bL, the currently viewed position in the second sequence is cL. That is, at each iteration, the values a[bL] and a[cL] are compared. The lesser of these values is copied to the buffer res. As more elements are added to the buffer, the values of bL and cL are increased by 1. As soon as one of them achieves the end of the sequence (bL becomes greater than bR or cL becomes greater than cR), the loop terminates. It means that all the elements of one of the merged sequence are copied completely to the buffer.
The number of inversions swaps changes when we move the element of the second sequence to the buffer. At the same time, the value swaps is increased by the number of unmerged elements of the first sequence, that equals to bR – bL + 1 (the elements a[bL .. bR] from the first sequence are not moved to the buffer yet).
 while((bL <= bR) && (cL <= cR))

 if (a[bL] <= a[cL]) res[i++] = a[bL++];

 else res[i++] = a[cL++], swaps += bR - bL + 1;

One of the merged sequences is over. Copy the rest of the other sequence to the end of the buffer.
 while (bL <= bR) res[i++] = a[bL++];

 while (cL <= cR) res[i++] = a[cL++];

Copy all the contents of the buffer to array а, beginning from the cell Left.

 memcpy(a + Left,res,len*sizeof(int));
Remove the buffer – the whole array res.

 delete[] res;

}
Sort the array a[left ... right] using “divide and conquer” algorithm. To do this, divide it into two parts a[left ... middle] and a[middle + 1 ... right], sort each of them separately, and then perform a merge.
void mergeSort(int *a, int left, int right)

{

 if (left >= right) return;

 int middle = (left + right) / 2;

 mergeSort(a,left,middle);

 mergeSort(a,middle+1,right);

 merge(a, left, middle, middle + 1, right);

}

The main part of the program. Read the input array, run the merge sort that counts the number of inversions swaps.

while(scanf("%d",&n),n)

{
 m = new int[n];
 for(swaps = i = 0; i < n; i++) scanf("%d",&m[i]);
 mergeSort(m, 0, n - 1);

 printf("%lld\n",swaps);
 delete[] m;
}
Realization with sort function
#include <cstdio>

#include <string>

#include <vector>

#include <algorithm>

#define MAX 500001

using namespace std;

int m[MAX];

int n, i, j;

long long swaps;

void merge(int left, int middle, int right)

{

 int i = left, j = middle + 1;

 while((i <= middle) && (j <= right))

 {

 if (m[i] <= m[j])

 i++;

 else

 {

 j++;

 swaps += middle - i + 1;

 }

 }

 sort(m + left, m + right + 1);

}

void mergeSort(int left, int right)

{

 if (left < right)

 {

 int middle = (left + right) / 2;

 mergeSort(left,middle);

 mergeSort(middle+1,right);

 merge(left, middle, right);

 }

}

int main(void)

{

 while(scanf("%d",&n),n)

 {

 for(swaps = i = 0; i < n; i++) scanf("%d",&m[i]);

 mergeSort(0, n - 1);

 printf("%lld\n",swaps);

 }

 return 0;

}

_1662463060.vsd
ai

bj

bj

merge(a,b)

an

a1

b1

bm

invertions

_1696170221.vsd
9

1

0

5

4

6 inversions

1

2

3

0 inversions

_1394977886.vsd
9

1

0

5

4

9

1

0

5

4

9

1

0

5

4

9

1

0

4

5

1

9

0

1

9

0

1

4

5

9

1

2

1

2

