1365. Dijkstra Algorithm
You are given a directed weighted graph. Find the shortest distance from vertex s to vertex f.
Input. The first line contains three integers n, s, and f (1 ≤ n ≤ 100, 1 ≤ s, f ≤ n), where n is the number of vertices in the graph. Each of the following n lines contains n integers, representing the adjacency matrix of the graph. The integer at the i-th row and j-th column indicates the weight of the edge from vertex i to vertex j. A value of -1 means there is no edge between the vertices, while a non-negative value represents the weight of the edge. The main diagonal of the matrix always contains zeros.
Output. Print the shortest distance from vertex s to vertex f. If there is no path between the two vertices, print -1.
	Sample input
	Sample output

	3 1 2

0 -1 2

3 0 -1

-1 4 0
	6

SOLUTION
graphs – Dijkstra algorithm
Algorithm analysis

In this problem, your task is to find the shortest distance between two vertices in a directed weighted graph. To solve it, you need to implement Dijkstra’s algorithm.
Example
The graph given in the example looks like this:

[image: image1.emf]12

3

2

3

4

The shortest distance from vertex 1 to vertex 2 is 2 + 4 = 6.

[image: image2.emf]12

3

42

3

dist[1] = 0

dist[3] = ∞

dist[2] = ∞

12

3

42

3

dist[1] = 0

dist[3] = 2

dist[2] = ∞

12

3

42

3

dist[1] = 0

dist[3] = 2

dist[2] = 6

Algorithm implementation
Let’s declare the constants and arrays we’ll use.
#define MAX 110

#define INF 0x3F3F3F3F

int m[MAX][MAX], used[MAX], d[MAX];

Read the input data.
scanf("%d %d %d", &n, &s, &f);

for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)

{

 scanf("%d", &m[i][j]);

 if (m[i][j] == -1) m[i][j] = INF;

}

Initialize the arrays.
memset(used, 0, sizeof(used));

memset(d, 0x3F, sizeof(d));

d[s] = 0;

Start the loop for Dijkstra’s algorithm. Since the graph contains n vertices, n – 1 iterations will be sufficient.
for (i = 1; i < n; i++)

{
Find the vertex with the smallest value of d[j] among those for which the shortest distance from the source is not calculated (i.e., for which used[j] = 0). Let this vertex be w.
 mind = INF;

 for (j = 1; j <= n; j++)

 if (used[j] == 0 && d[j] < mind) { mind = d[j]; w = j; }

If it is impossible to find a vertex to include in the set of vertices for which the shortest distance is already calculated, terminate the algorithm.
 if (mind == INF) break;

Relax all the edges outgoing from vertex w.
 for (j = 1; j <= n; j++)

 if (used[j] == 0) d[j] = min(d[j], d[w] + m[w][j]);
Mark that the shortest distance to w is calculated (it is stored in d[w]).
 used[w] = 1;

}

Print the answer – the value of d[f]. If it is equal to infinity, then there is no path to vertex f.
if (d[f] == INF) d[f] = -1;

printf("%d\n", d[f]);
Python implementation
Let’s declare the constants we’ll use.
MAX = 110
INF = float('inf') / 2
Read the input data.
n, s, f = map(int, input().split())
m = [[0] * (n + 1)]
for _ in range(n):
 row = list(map(int, input().split()))
 m.append([0] + [INF if x == -1 else x for x in row])
Initialize the lists.
used = [False] * (n + 1)
d = [INF] * (n + 1)
d[s] = 0
Start the loop for Dijkstra’s algorithm. Since the graph contains n vertices, n – 1 iterations will be sufficient.
for _ in range(n - 1):
Find the vertex with the smallest value of d[j] among those for which the shortest distance from the source is not calculated (i.e., for which used[j] = 0). Let this vertex be w.
 mind = INF
 w = -1
 for j in range(1, n + 1):
 if not used[j] and d[j] < mind:
 mind = d[j]
 w = j
If it is impossible to find a vertex to include in the set of vertices for which the shortest distance is already calculated, terminate the algorithm.
 if mind == INF:
 break
Relax all the edges outgoing from vertex w.
 for j in range(1, n + 1):
 if not used[j]:
 d[j] = min(d[j], d[w] + m[w][j])
Mark that the shortest distance to w is calculated (it is stored in d[w]).
 used[w] = True
Print the answer – the value of d[f]. If it is equal to infinity, then there is no path to vertex f.
print(-1 if d[f] == INF else d[f])
_1423818378.vsd
1

2

3

2

3

4

_1791901612.vsd
1

2

3

4

2

3

dist[1] = 0

dist[3] = ∞

dist[2] = ∞

1

2

3

4

2

3

dist[1] = 0

dist[3] = 2

dist[2] = ∞

1

2

3

4

2

3

dist[1] = 0

dist[3] = 2

dist[2] = 6

