1366. Stock Exchange
The world financial crisis is quite a subject. Some people are more relaxed while others are quite anxious. John is one of them. He is very concerned about the evolution of the stock exchange. He follows stock prices every day looking for rising trends. Given a sequence of numbers p1, p2, ..., pn representing stock prices, a rising trend is a subsequence pi1 < pi2 < ... < pik, with i1 < i2 < ... < ik. John’s problem is to find very quickly the longest rising trend.
Input. Each data set in the file stands for a particular set of stock prices. A data set starts with the length l (l ≤ 105) of the sequence of numbers, followed by the numbers (a number fits a long integer).
White spaces can occur freely in the input. The input data are correct and terminate with an end of file.
Output. The program prints the length of the longest rising trend.

For each set of data the program prints the result to the standard output from the beginning of a line.
	Sample input
	Sample output

	6

5 2 1 4 5 3

3

1 1 1

4

4 3 2 1
	3

1

1

SOLUTION
longest increasing subsequence
Algorithm analysis
Consists of several test cases. Each test contains a sequence of numbers for which the length of the longest increasing subsequence (LIS) must be found.
Algorithm realization
Declare the array lis.

#define MAX 100001

int lis[MAX];

The main part of the program. Read and process the input sequence.
while (scanf("%d",&n) == 1)

{

 for (len = i = 0; i < n; i++)

 {

 scanf("%d",&element);

 pos = lower_bound(lis,lis+len,element) - lis;

 if (pos < len) lis[pos] = element; else lis[len++] = element;

 }
Print the length of LIS.

 printf("%d\n",len);

}

Java realization
import java.util.*;
public class Main
{
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 int lis[] = new int[100001];
 while (con.hasNextInt())
 {
 int n = con.nextInt();
 int len = 0;
 for (int i = 0; i < n; i++)
 {
 int element = con.nextInt();
 int pos = Arrays.binarySearch(lis, 0, len, element);
 if(pos < 0) pos = - (pos + 1);
 lis[pos] = element;
 if(pos == len) len++;
 }
 System.out.println(len);
 }
 con.close();
 }
}
