1371. Quick answers
Joe is fond of computer games. Now, he must solve a puzzling situation. In front of his eyes lies a huge map with fortified towns. His enemy is a very powerful and tricky character who can connect and disconnect the towns by giving some commands. Two towns are connected if they have been directly connected or interconnected through some other connected towns at some moment in time. When a town is disconnected it gets isolated and clears its own connection history, not the connection history of the other towns. Each connection is bidirectional. Initially the towns are isolated. Joe is asked to answer quickly if two towns are connected, according to the history of the character’ commands.

Write a program which based on input information, counts the number of yes answers and the number of no answers to questions of the kind: is towni connected with townj?

Input. Each data set stands for a particular map and the associated character's commands, as follows:

1) The number of towns on the map n (n ≤ 10000);

2) A list of commands of the form:

a) c towni townj, where towni and townj are integers from 1 to no_of_towns. The command means that towni and townj get connected.

b) d towni, where towni is an integer from 1 to no_of_towns. The command means that towni gets disconnected.

c) q towni townj, where towni and townj are integers from 1 to no_of_towns. The command stands for the question: is towni connected with townj?

d) e, that ends the list of commands Each command is on a separate line.

Commands (a), (b), (c) can appear in any order. The towns’ connectivity is updated after each command of type (a) or (b). Each command of type (c) is processed according to the current configuration.

Output. The program prints these two numbers on the same line, in the order: n1, n2 as shown in sample output.
Example. For example, the input illustrated bellow corresponds to only one data set which stands for a map with 4 fortified towns. The character gives 9 commands. There are n1 yes answered questions and n2 no answered questions.
	Sample input
	Sample output

	4

c 1 2

c 3 4

q 1 3

c 2 3

q 1 4

d 2

q 4 1

q 2 4

e
	2 , 2

SOLUTION
data structures - dsu
Algorithm analysis
Let’s introduce the concept of a city identification code. Initially, we put Id[i] = i. When processing queries of type c and q on a system of disjoint sets, we will process array cells that correspond to the identification codes of cities. Let MaxID contain the minimum still unused city code (initially there are n cities, let MaxID = n + 1). Then we’ll disconnect the city (a query of the d towni type) by assigning a new id code to the towni (for example, Id[i] = MaxID ++). Thus, the old connections (the memory of the cities) remain, and the new city actually becomes disconnected from the rest.
For example, to unite cities i and j, the function Union(Id[i], Id[j]) will be called. The representative of the city i is returned by the function Repr(Id[i]).
Example
Initialize the array mas and the identification codes array. The identification code of each city initially equals to the number of the city itself (Id[i] = i).

[image: image1.emf]123456...mas

1234Id

Process the first three queries. In two queries, cities 1 and 2, 3 and 4 are connected. The graph has the form:

[image: image2.emf]q(1,3) = no

c 1 2223456...

c 3 4224456...

12

34

The answer to the query q(1, 3) is no, since the vertices 1 and 3 are not connected.

The next query unites cities 2 and 3. Vertices 1 and 4 become connected. Query q(1, 4) returns yes.

[image: image3.emf]d 2

c 2 3244456q(1,4) = yes...

12

34

The next query (d 2) disconnects city 2. City 2 is assigned a new id code. The minimum unused city code is 5. Set Id[2] = 5. Cities 4 and 1 are connected (the connection is not broken). Cities 2 and 4 are not connected with each other. For example, for a query q(2, 4) we must check if Repr (Id[2]) and Repr (Id[4]) (or Repr(5) and Repr(4)) are equal. Taking into account that Repr(5) = 5, Repr(4) = 4, we conclude that vertices 2 and 4 are disconnected.

[image: image4.emf]d 2244456q(4,1) = yes...

1234Id

q(2,4) = nod 2

1

342

Algorithm realization
Let’s declare an array mas used by the disjoint set dat structure. Declare array Id that contains the current city identification codes.
#define MAX 100010

int mas[MAX], Id[MAX];

Function Repr finds a representative of the set that contains vertex n.
int Repr(int n)

{

 if (n == mas[n]) return n;

 return mas[n] = Repr(mas[n]);

}

Function Union unites sets that contain vertices x and y.
int Union(int x,int y)

{

 int x1 = Repr(x),y1 = Repr(y);

 mas[x1] = y1;

 return (x1 != y1);

}

The main part of the program.

while(scanf("%d\n",&n) == 1)

{

Initialization of arrays and variables.
 for(i = 1; i < MAX; i++) mas[i] = i, Id[i] = i;

 MaxID = n + 1;

 n1 = n2 = 0;

Process sequentially the queries.
 while(scanf("%c",&c), c != 'e')

 {

Unite the cities towni and townj.

 if (c == 'c')

 {

 scanf("%d %d\n",&i,&j);

 Union(Id[i],Id[j]);

 }

Disconnect the city towni.

 if (c == 'd')

 {

 scanf("%d\n",&i);

 Id[i] = MaxID++;

 }

Check if the cities towni and townj are connected.
 if (c == 'q')

 {

 scanf("%d %d\n",&i,&j);

 if (Repr(Id[i]) == Repr(Id[j])) n1++; else n2++;

 }

 }

Print the answer.

 printf("%d , %d\n",n1,n2);

}

_1694198322.vsd
q(1,3) = no

c 1 2

2

2

3

4

5

6

...

c 3 4

2

2

4

4

5

6

...

1

2

3

4

_1694198634.vsd
d 2

c 2 3

2

4

4

4

5

6

q(1,4) = yes

...

1

2

3

4

_1694199003.vsd
d 2

2

4

4

4

5

6

q(4,1) = yes

...

1

2

3

4

Id

q(2,4) = no

d 2

1

3

4

2

_1694198112.vsd
1

2

3

4

5

6

...

mas

1

2

3

4

Id

