1525. A Grouping Problem
You are given a set of n integers. You can take k different elements from them to make a group. Two groups will be different if there is at least one element which is not common to both. For example, if there are 4 elements a, b, c, d and you are asked to take two elements then ab, ad, bc, cd are all valid and different groups. A grouping system is complete if for a particular k, number of different groups is the maximum. In the former case, {ab, bc, cd, bd, ad, ac} is a complete grouping system.

For a particular complete grouping system, the fitness is calculated in the following way:

1. Each group of a grouping system contributes a part – the multiplication of all numbers of that group;
2. Contribution from all groups are added;

3. The fitness is equivalent to Total Contribution mod m, m is the bounding parameter.

In our example, for k = 2, the fitness is F2 = (ab + bc + cd + bd + ad + ac) mod m. If k = 1, then fitness is F1 = (a + b + c + d) mod m.

You have to find the complete grouping system with maximum fitness.
Input. Each test case starts with two positive integer n (2 ≤ n ≤ 1000) and m (1 ≤ m < 231). In next few lines there will be n positive integers. Each integer will be at best 1000. Input will be terminated by a case where n = m = 0.

Output. For each test case, print in a line the maximum fitness possible for a grouping system.
	Sample input
	Sample output

	4 10

1 2 3 4

4 100

1 2 3 4

4 6

1 2 3 4

0 0
	5

50

5

SOLUTION
dynamic programming
Algorithm analysis

Let а1, a2, …, an be the given n numbers. Let Fik (i ≥ k) be the sum of all possible products of k numbers, taken among the first i numbers a1, …, ai. Construct the following table Fik:

[image: image1.emf]i \ k1

1

2

3

a

1

a

1

+ a

2

a

1

+ a

2

+ a

3

2

a

1

a

2

a

1

a

2

+ a

1

a

3

+ a

2

a

3

3

a

1

a

2

a

3

For four numbers, respectively, we get:

· F4,1 = a1 + a2 + a3 + a4;
· F4,2 = a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4;
· F4,3 = a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4;
· F4,4 = a1a2a3a4;
We have the following recurrence relations:
Fi1 = F(i-1)1 + ai, Fii = F(i-1) (i-1) * ai, 1 ≤ i ≤ n
Fik = F(i-1)k + F(i-1) (k-1) * ai, 1 i n, 1 < k < i
For example,

· F3,2 = F2,2 + F2,1 * a3 = a1a2 + (a1 + a2) * a3 = a1a2 + a1a3 + a2a3;
· F4,3 = F3,3 + F3,2 * a4 = a1a2a3 + (a1a2 + a1a3 + a2a3) * a4 =

a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4
The values of each of the following line are recalculated through the values of the previous line, so it is enough to store in a memory only one linear array d of size 1000. The recalculation of the values in the i – th line must be started from the end: first compute the value of Fii, then compute Fi(i-1) and so on till Fi1. The calculations should be performed modulo m.
Example
Consider the first test case. Let’s construct two tables: in the second one the calculations will be performed modulo m = 10, and in the first one no.

[image: image2.emf]i \ k1234

1

2

3

4

1

32

6116

10355024

i \ k1234

1

2

3

4

1

32

616

0504

For example,

· F4,2 = F3,2 + F3,1 * 4 = 11 + 6 * 4 = 35;
· F4,3 = F3,3 + F3,2 * 4 = 6 + 11 * 4 = 50;
The answer is the maximum number in the fourth row of the second table.

Algorithm realization

Declare the linear array d, where we shall recalculate the values Fik.
long long d[1000];
Print the number of elements n and the value of m. For each input test set all elements of d to zero. Assign the first element a1 to d[0].

while(scanf("%lld %lld",&n,&m), n + m > 0)

{

 memset(d,0,sizeof(d));

 scanf("%lld",&d[0]);
Read the value of x = ai+1 (1 i < n) and recalculate the values Fik, k = i, i – 1, …, 1 using the recurrent formulas given above. Do all computations by modulo m.
 for(i = 1; i < n; i++)

 {

 scanf("%lld",&x);

 d[i] = (d[i-1] * x) % m;
 for(j = i - 1; j > 0; j--)

 d[j] = (d[j-1] * x + d[j]) % m;
 d[0] = (d[0] + x) % m;

 }
Find the maximum value among the elements of array d and assign it to the variable res.

 res = 0;

 for(i = 0; i < n; i++)

 if (d[i] > res) res = d[i];
Print the answer.
 printf("%lld\n",res);

}
_1521222267.vsd
i \ k

1

a1 + a2

a1 + a2 + a3

2

1

2

3

3

a1

a1a2

a1a2 + a1a3 + a2a3

a1a2a3

_1521221134.vsd
i \ k

1

2

3

4

1

2

3

4

1

3

2

6

11

6

10

35

50

24

i \ k

1

2

3

4

1

2

3

4

1

3

2

6

1

6

0

5

0

4

