1533. Anagram generation
Write a program that generates all possible words from a given set of letters.

For example, from the word “abc”, all possible permutations of the letters are: “abc”, “acb”, “bac”, “bca”, “cab”, and “cba”.

The input words may contain duplicate letters. The program must avoid printing the same word more than once. All words should be printed in ascending alphabetical order.
Input. The first line contains the number of test cases. Each of the following lines contains one word consisting of Latin letters (from A to Z). Uppercase and lowercase letters are treated as distinct.

Output. For each test case, print all unique words that can be formed from the given letters in ascending order. Each word should be printed on a separate line. In alphabetical order, uppercase letters are considered smaller than their lowercase counterparts.

	Sample input
	Sample output

	3

aAb

abc

acba
	Aab

Aba

aAb

abA

bAa

baA

abc

acb

bac

bca

cab

cba

aabc

aacb

abac

abca

acab

acba

baac

baca

bcaa

caab

caba

cbaa

SOLUTION
combinatorics - permutations
Exercise
1. What is the difference between lexicographical sorting and alphabetical sorting of words?

2. Consider the string “zAZaaZ”. Specify the order of the letters in alphabetical and lexicographical sorting.

3. Which STL function can be used to generate all permutations of the letters in a word?

4. The sort function by default sorts the letters of a word in lexicographical order. How can it be used to perform alphabetical sorting?

5. Implement a function for alphabetical sorting, int lt(char a, char b), which will be passed as the third argument to the sort function.

6. How can you find the alphabetically smallest permutation of the letters in a string s?

Algorithm analysis
Sort the characters of the input string in ascending order according to alphabetical order. Then, use the built-in next_permutation function to generate all permutations.

Since the default (lexicographical) sorting assumes that any uppercase letter is smaller than any lowercase letter, it is necessary to define a custom comparison function for the characters. For example, under default sorting, the letters a, A, z, Z, r, R would result in the string “ARZarz”. However, the task requires sorting and generating permutations in alphabetical order AaBbCc…Zz. Therefore, the letters a, A, z, Z, r, R should produce the string “AaRrZz”.

Example
In the first test, for the string “aAb”, the smallest permutation will be “Aab”, and the largest will be “baA” .
Algorithm implementation
The lt function is used for sorting characters and generating permutations. It compares two characters according to the alphabetical order AaBbCc…Zz.
int lt(char a, char b)

{

 if (toupper(a) != toupper(b)) return (toupper(a) < toupper(b));

 return (a < b);

}

The main part of the program. Read the number of test cases n.
cin >> n;
Process n test cases sequentially.
for (i = 0; i < n; i++)

{
Read the input string s and sort its characters in alphabetical order.
 cin >> s;

 sort(s.begin(), s.end(), lt);
Print the current anagram (permutation of characters) and use the next_permutation function to generate the next one, as long as possible.
 do {

 cout << s << endl;

 } while (next_permutation(s.begin(), s.end(), lt));

}
