1534. Divisibility
You are given a set of integers a1, a2, ..., an. Determine the number of integers in the range from l to r (inclusive) that are divisible by at least one number from this set.

Input. The input consists of multiple test cases. The first line of each test case contains two integers l (1 ≤ l ≤ 109) and r (1 ≤ r ≤ 109), defining the range boundaries. The second line contains the number of elements n (1 ≤ n ≤ 18) in the set and the set of integers a1, a2, ..., an​. Each integer in the set is between 1 and 109.
Output. For each test case, print a single line with the number of integers in the range [l, r] that are divisible by at least one number from the set a1, a2, ..., an.

	Sample input
	Sample output

	293 784

1 1

579000 987654

2 1 2

1 1000000000

2 2 3
	492

408655

666666667

SOLUTION
combinatorics - inclusion-exclusion principle
Algorithm analysis
Let a = { a1, a2, ..., an } be the set of numbers. Let numDivisible(l, r, a) be the amount of numbers from l to r inclusively, that are divisible by at least one of the numbers a1, a2, ..., an. Use the fact that

numDivisible(L, R, a) = numDivisible(1, R, a) – numDivisible(1, L – 1, a).

The value numDivisible(1, n, a) will be computed by means of a function f(n, a). Consider the process of computing the result depending on the number of elements in the array a.

1. If a contains only one element, the answer is the value n / a[0] (rounding to the nearest integer down).

2. Let a contains two elements. The answer will be less than n / a[0] + n / a[1] because there will be numbers divisible by a[0] and a[1] simultaneously. And in the sum these numbers will be counted twice. The amount of numbers divisible by both a[0] and a[1] equals to n / LCM(a[0], a[1]). Thus, for two numbers
f(n, a) = n / a[0] + n / a[1] – n / LCM(a[0], a[1])

3. Let a contains three elements. Then according to inclusion - exclusion principle
f(n, a) = n / a[0] + n / a[1] + n / a[2] –

– n / LCM(a[0], a[1]) – n / LCM(a[1], a[2]) – n / LCM(a[0], a[2]) +
n / LCM (a[0], a[1], a[2])

Since by the problem statement the array a contains from 1 to 18 elements, it is possible to iterate over all subsets of the set a in no more than 218 operations. Moreover, if the subset
[image: image1.wmf]{

}

k

i

i

i

a

a

a

,...,

,

2

1

 contains an odd number of elements, then the value of n / LCM(
[image: image2.wmf]k

i

i

i

a

a

a

,...,

,

2

1

) should be added to the accumulated sum (answer), if it is even, then subtract.
If, when calculating LCM (
[image: image3.wmf]k

i

i

i

a

a

a

,...,

,

2

1

), the current value of LCM (
[image: image4.wmf]j

i

i

i

a

a

a

,...,

,

2

1

) becomes greater than n for some j < k, then the process of computing LCM (
[image: image5.wmf]k

i

i

i

a

a

a

,...,

,

2

1

) can be completed, since then n / LCM(
[image: image6.wmf]k

i

i

i

a

a

a

,...,

,

2

1

) = 0.
Algorithm realization
Function f(n, a) computes the value of numDivisible(1, n, a). Function gcd computes the greatest common divisor of two numbers.

int f(int N, int *a)

{
The answer is computed in the variable res.
 int res = 0;
Iterate over all subsets of the set { a1, a2, ..., an }. The variable i contains the mask of a subset.
 for(int i = 1; i < (1<<n); i++)

 {
In the variable lcm compute the LCM of the subset specified by the mask i.
 long long lcm = 1;
In the variable bits count the number of elements in the subset specified by the mask i (the number of bits equal to 1 in i).
 int bits = 0;

 for(int j = 0; j < n; j++)

 if (i & (1 << j))

 {

 bits++;

 int temp = gcd(lcm,a[j]);

 lcm = lcm / temp * a[j];
If the LCM of the subset becomes larger than N, then there is no sence in further computing. Anyway, the N / lcm value is zero.
 if (lcm > N) break;

 }
Depending on the parity of the number of bits in the mask (the number of elements in the current considered subset), add or subtract the next term.
 if (bits % 2) res += N / lcm; else res -= N / lcm;

 }

 return res;

}

The main part of the program. Read the input data.
while(scanf("%d %d",&l,&r) == 2)

{

 scanf("%d",&n);

 for(i = 0; i < n; i++) scanf("%d",&a[i]);
Compute the required amount of numbers on a segment [l; r].
 res = f(r,a) - f(l - 1,a);
Print the answer.
 printf("%d\n",res);

}

_1670941041.unknown

_1670941085.unknown

_1261157823.unknown

_1261157399.unknown

