1535. Skyscrapers
The skyline of the city has n buildings all in a straight line; each building has a distinct height between 1 and n, inclusive. The building at index i is considered visible from the left if there is no building with a smaller index that is taller. Similarly, a building is visible from the right if there is no taller building with a higher index. For example, if the buildings in order are {1, 3, 5, 2, 4}, then three buildings are visible from the left (1, 3, 5), but only two are visible from the right (4 and 5).

[image: image1.emf]13524

1

3

5

4

5

You will be given the total number of buildings n, l buildings visible from the left, and r buildings visible from the right. Find the number of permutations of the buildings that are consistent with these values.

Input. Each line is a separate test case that contains the values of n (1 ≤ n ≤ 100), l and r (1 ≤ l, r ≤ n).
Output. For each test case print in a separate line the number of permutations of the buildings that are consistent with the given values. The results must be printed modulo 109 + 7.

	Sample input
	Sample output

	4 2 2

5 3 2

8 3 2
	6
18

4872

SOLUTION
dynamic programming
Algorithm analysis
Suppose it remains to arrange n houses, l of which should be visible from the left, and r from the right. Let its possible to do in f(n, l, r) ways. Consider the house with the smallest height. If you put it on the left, then it will always be visible, and the remaining houses can be arranged in f(n – 1, l – 1, r) ways. If the house with the smallest height is placed on the right, then it will always remain visible on the right, the rest of the houses can be arranged in f(n – 1, l, r – 1) ways. The smallest house can be placed between the other houses in n – 2 ways. In this case it will not be visible, so the remaining houses can be arranged in (n – 2) * f(n – 1, l, r) ways.

[image: image2.emf]1

2 … n

f(n-1, l-1, r)

1

(n-2) * f(n-1, l, r)

2 … n

f(n-1, l, r-1)

1

Note that for n = 1 the only possible arrangement will be only for l = r = 1. We obtain the recurrence relation:
f(n, l, r) = f(n – 1, l – 1, r) + f(n – 1, l, r – 1) + (n – 2) * f(n – 1, l, r),
f(1, 1, 1) = 1,

f(1, x, y) = 0, when x and y are not simultaneously equal to 1
Example
Construct all permutations of houses for n = 4, l = 2, r = 2.

f(4, 2, 2) = f(3, 1, 2) + 2 * f(3, 2, 2) + f(3, 2, 1) = 1 + 2 * 2 + 1 = 6

[image: image3.emf]1

2, 3, 4

f(3, 1, 2)

1

2 * f(3, 2, 2)

2, 3, 4

f(3, 2, 1)

1

[image: image4.emf]1

1

3

2

1

4

2

3

4

2

3

4

1

2

3

4

1

3

2

4

1

2

3

4

2 * f(3, 2, 2)f(3, 1, 2)f(3, 2, 1)

Algorithm realization
Declare a three-dimensional array dp, where dp[i][j][k] will store the value f(i, j, k).
#define MAX 101
int dp[MAX][MAX][MAX];

Function f returns the number of ways that n houses can be arranged so that l can be visible from the left and r houses can be visible from the right.
long long f(int n, int l, int r)

{

 if (n == 1) return (l == 1 && r == 1) ? 1 : 0;

 if ((l < 1) || (r < 1)) return 0;

 if (dp[n][l][r] != -1) return dp[n][l][r];

 dp[n][l][r] = (f(n - 1, l - 1, r) + f(n - 1, l, r - 1) + (n - 2)*f(n - 1, l, r)) % 1000000007;

 return dp[n][l][r];

}

The main part of the program. Read the input data. Compute and print the answer.
while (scanf("%d %d %d", &n, &l, &r) == 3)

{

 memset(dp, -1, sizeof(dp));

 res = f(n, l, r);

 printf("%d\n", res);

}
Java realization
import java.util.*;
public class Main
{
 static long dp[][][] = new long[101][101][101];
 public static long f(int n, int l, int r)
 {
 if (n == 1) return (l == 1 && r == 1) ? 1 : 0;
 if (l < 1 || r < 1) return 0;
 if (dp[n][l][r] != -1) return dp[n][l][r];
 dp[n][l][r] = (f(n - 1, l - 1, r) + f(n - 1, l, r - 1) + (n - 2)*f(n - 1, l, r)) % 1000000007;
 return dp[n][l][r];
 }
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 while (con.hasNextInt())
 {
 int n = con.nextInt();
 int l = con.nextInt();
 int r = con.nextInt();
 for(int i = 0; i < 101; i++)
 for(int j = 0; j < 101; j++)
 for(int k = 0; k < 101; k++)
 dp[i][j][k] = -1;
 long res = f(n, l, r);
 System.out.println(res);
 }
 con.close();
 }
}
_1666545233.vsd
1

2 … n

f(n - 1, l - 1, r)

1

(n - 2) * f(n - 1, l, r)

2 … n

f(n - 1, l, r - 1)

1

_1666546128.vsd
1

2, 3, 4

f(3, 1, 2)

1

2 * f(3, 2, 2)

2, 3, 4

f(3, 2, 1)

1

_1666547662.vsd
1

4

1

1

3

2

2

4

3

1

2

3

2

3

4

4

1

3

2

4

1

2

3

4

2 * f(3, 2, 2)

f(3, 1, 2)

f(3, 2, 1)

_1521885430.vsd
1

3

5

2

4

1

3

5

4

5

