1540. 23 out of 5
Is it possible to find an arithmetic expression consisting of five given numbers that will yield the value 23. For this problem you can use only three arithmetic expressions: +, -, *. Assume that all these operations have the same priority and executed sequentially from left to right.
Input. Each line contains five positive integers from 1 to 50. Input is terminated by a line containing five zero’s and is not processed.
Output. For each test case print “Possible” (without quotes) if their exists an arithmetic expression as described above that yields 23. Otherwise print “Impossible”.

	Sample input
	Sample output

	1 1 1 1 1

1 2 3 4 5

2 3 5 7 11

0 0 0 0 0
	Impossible

Possible

Possible

SOLUTION
combinatorics – backtracking
Algorithm analysis
Generate all permutations of input numbers. For each permutation between the numbers place all possible signs of arithmetic operations and calculate the resulting expressions. If at least one expression has the value of 23, then set the variable flag to 1 and end the processing of the current test.
Algorithm realization
Store the input five numbers in an integer array a. The variable flag takes the value of 1 if an expression with the value 23 is found, otherwise flag = 0.
int a[5], flag;
Function RunSum evaluates the value of an expression which operands are in array a. The signs of various operations are inserted between the operands and the resulting expressions are computed using the backtracking technique. If the value of one of expressions is 23, then function returns 1, otherwise 0.
int RunSum(int Sum, int index)

{

 if (index == 5)

 if (Sum == 23) return 1; else return 0;

 if (RunSum(Sum+a[index],index+1)) return 1;

 if (RunSum(Sum-a[index],index+1)) return 1;

 if (RunSum(Sum*a[index],index+1)) return 1;

 return 0;

}

The main part of the program. Read five numbers into array a. Start the procedure for generating all permutations. Since the next_permutation function generates permutations in lexicographic order, the smallest permutation must be the first. The smallest permutation is the one in which the numbers form a non-decreasing sequence. That is, before generating the permutations, the numbers in the array a should be sorted in non decreasing order (if this is not done, then not all permutations will be considered).
while(scanf("%d %d %d %d %d",
 &a[0],&a[1],&a[2],&a[3],&a[4]),a[0]+a[1]+a[2]+a[3]+a[4])

{

 sort(a,a+5);
 flag = 0;

 do{
For each permutation, run the RunSum function, which finds out whether it is possible to arrange the operation signs between the numbers of this permutation so as to obtain the value 23.
 if (flag = RunSum(a[0],1)) break;

 } while(next_permutation(a,a+5));
If the variable flag is set to 1, then print “Possible”, otherwise print “Impossible”.
 if (flag) printf("Possible\n"); else printf("Impossible\n");

 memset(a,0,sizeof(a));

}
