1592. Bridge
n people come to a river in the night. There is a narrow bridge, but it can hold only two people at a time. They have one torch and, because it's night, the torch has to be used when crossing the bridge. The movement across the bridge without a torch is prohibited.

Each person has a different crossing speed; the speed of a group is determined by the speed of the slower member. Your job is to determine a strategy that gets all n people across the bridge in the minimum time.

Input.  Consists of multiple test cases. The first line of each test case contains the number of people n (n ≤ 103), and the second line gives the sequence of n numbers – the crossing times for each of the people. Nobody takes more than 104 seconds to cross the bridge.
Output. For each test case print the next information. The first line must contain the total number of seconds required for all n people to cross the bridge. The following lines give a strategy for achieving this time. Each line contains either one or two integers, indicating which person or people form the next group to cross. Each person is indicated by the crossing time specified in the input. Although many people may have the same crossing time the ambiguity is of no consequence. Note that the crossings alternate directions, as it is necessary to return the flashlight so that more may cross. If more than one strategy yields the minimal time, any one will do.
	Sample input
	Sample output

	4 

1 2 5 10

3

1 2 3
	17

1 2

1

5 10

2

1 2

6

1 2

1

1 3


SOLUTION
greedy
Algorithm analysis
Sort the time it takes people to cross the river in ascending order. Let ti be the time of crossing the river by the i - th person (t1  t2  …  tn). Consider how one, two, or three people should cross the bridge. For n = 1 and n = 2, the optimal speed of crossing the river, respectively, is t1 and t2 = max(t1, t2) (the speed of movement of two people is equal to the speed of the slow one). In the case of three people (n = 3), the first and second go to the other side, the fastest (first) comes back with a lantern and transfers the third. Thus, the optimal time to cross the river is t1 + t2 + t3.

[image: image1.emf]t

1

, t

2

, t

3

t

1

, t

2

t

2

t

1

t

1

t

1

, t

3

t

3

t

1

+ t

2

+ t

3


Consider the case when n > 3. Let A  B  …  Y  Z be the people sorted by time of crossing the bridge in increasing order (A is the fastest, Z is the slowest). Let J be the person with whom Z moves. If J stays on the other side and never returns back over the bridge, then it is optimal to choose it equal to Y. If J returns, then it is optimal to choose it as the fastest, that is, A. Thus Z can cross the bridge either with Y or A.

[image: image2.emf]Y, Z

t

Z

Y, Z

A, Z

t

Z

Z

A

t

A


Compute the passage times of the two slowest people (Y and Z) according to these two strategies.
1. Z goes with Y. But then before that there must be somebody who will return the lantern, for example K. This K also had to be taken to the other side in order to return the lantern, and give it to Y and Z. Let it be L. Thus, K and L must return. To minimize the time, the two fastest should be selected as K and L, that is, A and B. The passage time for Y and Z is tA + 2tB + tZ.

[image: image3.emf]Y, Z

t

Z

Y, Z

A

t

A

A, B

t

B

B

A, Y, Z

A, B, Y, Z

B

t

B

A, B


2. Z crosses the bridge together with A, then A returns. Then A crosses the bridge with Y and A returns. To go to another side of the river for Y and Z takes 2tA + tY + tZ time.

[image: image4.emf]A, Y

t

Y

Y, Z

A

t

A

A, Z

t

Z

Z

A, Y

A, Y, Z

A

t

A

A


In both cases, only two slowest people cross the bridge. The strategy (first or second) is chosen depending which of the values (tA + 2tB + tZ or 2tA + tY + tZ) is less. If initially n people should cross the bridge, then n – 2 people must do it recursively.
Example
Sort the times of crossing the bridge: 1, 2, 5, 10. Here tA = 1, tB = 2, tY = 5, tZ = 10. The passage time of the two slowest people according to the first and second strategies are respectively equal
· tA + 2tB + tZ = 1 + 2 * 2 + 10 = 15; 
· 2tA + tY + tZ = 2 * 1 + 5 + 10 = 17;
Since the first value is less, then Z should go with Y. Z with Y cross the bridge in time 15, after which it remains to go for A and B to the other bank. This is done in time max{tA, tB} = 2.
The total time to cross the bridge is 15 + 2 = 17.

[image: image5.emf]5, 10

10

5, 10

1

1

1, 2

2

2

1, 5, 10

1, 2, 5, 10

2

2

1, 2

1, 2

2

1, 2, 5, 10


Algorithm realization
Array m stores the time of people to cross the river.
int m[1001];

Function go(n, visible) returns the optimal time in which n people can cross the river. The variable visible = 1, if the moving strategy itself should be printed, and visible = 0 otherwise.
int go(int n,int visible)

{

  int First, Second, Best;
One person crosses the river.
  if (n == 1)

  {

    if (visible) printf("%d\n",m[0]);

    return m[0];

  } else
Two people cross the river.
  if (n == 2)

  {

    if (visible) printf("%d %d\n",m[0],m[1]);

    return m[1];

  } else
Three people cross the river.
  if (n == 3)

  {

    if (visible) 

    {

      printf("%d %d\n",m[0],m[1]);

      printf("%d\n",m[0]);

      printf("%d %d\n",m[0],m[2]);

    }

    return m[0] + m[1] + m[2];

  };
Compute the optimal time First and Second for the first and the second strategies described above.
  First = m[0] + 2 * m[1] + m[n-1];

  Second = 2 * m[0] + m[n-2] + m[n-1];

  Best = (First < Second) ? First : Second;

  if (visible) 

  {

    if (Best == First)

    {

      printf("%d %d\n",m[0],m[1]);

      printf("%d\n",m[0]);

      printf("%d %d\n",m[n-2],m[n-1]);

      printf("%d\n",m[1]);

    } else

    {

      printf("%d %d\n",m[0],m[n-2]);

      printf("%d\n",m[0]);

      printf("%d %d\n",m[0],m[n-1]);

      printf("%d\n",m[0]);

    }

  }

Recursively compute the optimal strategy for the remaining n – 2 people.
  return Best + go(n-2,visible);  

}
The main part of the program. Read the number of test cases, read the time it takes for people to cross the bridge into array m.
while(scanf("%d",&n) == 1)
{

  for(i = 0; i < n; i++) scanf("%d",&m[i]);
Sort the times of crossing the river in ascending order. 
  sort(m,m+n);
Run function go with parameter visible = 0, that returns the optimal river crossing time. Print it, and then run function go again with parameter visible = 1, that prints the sequence of movements. 
  res = go(n,0);

  printf("%d\n",res);

  res = go(n,1);

}
_1665482428.vsd

_1665483191.vsd

_1665483678.vsd

_1665482950.vsd

_1665482155.vsd

