1593. Elegant permuted sum
You will be given n integers {a1, a2, …, an}. Find a permutation of these n integers so that summation of the absolute differences between adjacent elements is maximized. We will call this value the elegant permuted sum.

Consider the sequence {4, 2, 1, 5}. The permutation {2, 5, 1, 4} yields the maximum summation. For this permutation sum = |2 – 5| + |5 – 1| + |1 – 4| = 3 + 4 + 3 = 10. Of all the 24 permutations, you won't get any summation whose value exceeds 10.

Input. The first line is the number of test cases t (t < 100). Each case consists of a line that starts with n (1 < n < 51) followed by n non-negative integers. None of the elements of the given permutation will exceed 1000.
Output. For each test case print the case number followed by the elegant permuted sum.
	Sample input
	Sample output

	3

4 4 2 1 5

4 1 1 1 1

2 10 1
	Case 1: 10

Case 2: 0

Case 3: 9

SOLUTION
greedy
Algorithm analysis
Sort the numbers of the input sequence a. Create a new array v, where we’ll construct the required permutation. Initially put into it the minimum and maximum elements of the sequence a (and, accordingly, remove these elements from a). We’ll compute the elegant sum in the variable s. Initialize s = | v[0] – v[1] |.
As long as a is not empty, choose greedily the best choice among the following four possibilities:
1. The smallest element of the current array a is placed at the start of array v.
2. The smallest element of the current array a is placed at the end of array v.
3. The largest element of the current array a is placed at the start of array v.
4. The largest element of the current array a is placed at the end of array v.

[image: image1.emf]v

a

min

v

a

min

v

a

max

v

a

max

For each case, recompute the new value of s. We make the choice for which the new value of s will be the largest. For each test, print the value of s as the answer.
Since a and v are dynamically updated, use deques as containers.
Example
Consider how the algorithm works for the first test case. Sort the array:
a = {1, 2, 4, 5}
Step 1. Push the smallest and the largest elements into array v: v = {1, 5}. Remove these elements from a, whereupon a = {2, 4}.
Append the smallest and the largest elements of array a to the right and to the left of array v. The largest value of the sum is reached, for example, on the array {1, 5, 2}.

[image: image2.emf]1 5

1 5 2

1 5 2

1 5 4

1 5 4

|2 –1| + |5 –1| = 5

|5 –1| + |2 –5| = 7

|1 –4| + |5 –1| = 7

|5 –1| + |4 –5| = 5

Step 2. v = {1, 5, 2}, a = {4}. There is one element left in the a array. Append it to the right and to the left of array v. Recalculate the sums.

[image: image3.emf]1 2

1 5 4

1 5 4

|1 –4| + |5 –1|+ |2–5| = 10

1 5

2

2 |5 –1|+ |2–5|+ |4–2|= 9

The resulting sum is 10, it is obtained, for example, for permutation
{4, 1, 5, 2}
Algorithm realization
Declare the deques.

deque<int> a, v;
Read the number of test cases tests.

scanf("%d", &tests);

for (i = 1; i <= tests; i++)

{
Start processing the next test xase. Clear the contents of arrays.
 scanf("%d", &n);

 a.clear(); v.clear();
Read the input array а.

 for (j = 0; j < n; j++)

 {

 scanf("%d", &val);

 a.push_back(val);

 }
Sort the input array.

 sort(a.begin(), a.end());

Push the minimum and the maximum elements of the sequence a into array v.
 v.push_back(a.back());

 v.push_front(a.front());
Initially set s = | v[1] – v[0] |.

 s = abs(v.back() - v.front());

Delete these two elements from array a.
 a.pop_back();

 a.pop_front();

While array a is not empty, we consider 4 cases and make the optimal choice among them using the greedy method.
 while (!a.empty())

 {
Declare an integer array mx of four elements.
 mx[0] = abs(v.front() - a.front());

 mx[1] = abs(v.back() - a.front());

 mx[2] = abs(v.front() - a.back());

 mx[3] = abs(v.back() - a.back());

 rmax = *max_element(mx, mx + 4);

 if (rmax == mx[0])

 {

 v.push_front(a.front());

 a.pop_front();

 } else
 if (rmax == mx[1])

 {

 v.push_back(a.front());

 a.pop_front();

 } else
 if (rmax == mx[2])

 {

 v.push_front(a.back());

 a.pop_back();

 } else
 {

 v.push_back(a.back());

 a.pop_back();

 }

 s += rmax;

 }
Print the answer.
 printf("Case %d: %d\n", i, s);

}

_1665319677.vsd
1

2

2

2

|5 – 1| + |2 – 5| + |4 – 2| = 9

1

5

4

1

5

4

|1 – 4| + |5 – 1| + |2 – 5| = 10

1

5

_1665410460.vsd
v

amin

v

amin

v

amax

v

amax

_1665319478.vsd
1

5

1

5

2

1

5

2

1

5

4

1

5

4

|2 – 1| + |5 – 1| = 5

|5 – 1| + |2 – 5| = 7

|1 – 4| + |5 – 1| = 7

|5 – 1| + |4 – 5| = 5

