1776. Rails
There is a famous railway station in PopPush City. Country there is incredibly hilly. The station was built in the last century. Unfortunately, funds were extremely limited that time. It was possible to establish only a surface track. Moreover, it turned out that the station could be only a dead-end one (see picture) and due to lack of available space it could have only one track.

[image: image1.png]
The local tradition is that every train arriving from the direction A continues in the direction B with coaches reorganized in some way. Assume that the train arriving from the direction A has n ≤ 1000 coaches numbered in increasing order 1, 2, ..., n. The chief for train reorganizations must know whether it is possible to marshal coaches continuing in the direction B so that their order will be a1, a2, ..., an. Help him and write a program that decides whether it is possible to get the required order of coaches. You can assume that single coaches can be disconnected from the train before they enter the station and that they can move themselves until they are on the track in the direction B. You can also suppose that at any time there can be located as many coaches as necessary in the station. But once a coach has entered the station it cannot return to the track in the direction A and also once it has left the station in the direction B it cannot return back to the station.

Input. Consists of blocks of lines. Each block except the last describes one train and possibly more requirements for its reorganization. In the first line of the block there is an integer n described above. In each of the next lines of the block there is a permutation of 1, 2, ..., n. The last line of the block contains just 0.

The last block consists of just one line containing 0.

Output. For each input line containing a permutation of numbers, output Yes if the indicated permutation of cars can be performed, and No otherwise. After outputting answers to all permutations of each test, output an empty string. Nothing should be output for the last null test.
	Sample input
	Sample output

	5

1 2 3 4 5

5 4 1 2 3

0

6

6 5 4 3 2 1

0

0
	Yes

No

Yes

SOLUTION
data structures - stack
Algorithm analysis
Store the cars that will enter the dead-end station in the stack s. On side A, the cars are in the sequence 1, 2, ..., n. If the first car on side B should be car k, then this can be achieved by driving into a dead end all carriages with numbers 1, 2, ..., k, and then moving the car with number k to side B.

[image: image2.emf]k

1

2

...

k -1

k + 1...

n

12

...

n

BABA

Let after that the car with number l should be the second on side B. If l < k, then it can be moved in the direction B only if it is currently at the top of the stack s (otherwise, the required rearrangement of cars is not possible). If l > k, then we move from side A all the cars up to the l-th iton the stack, and then we move the car l to the side B. Continue to simulate the moving of cars in this way until all cars are transported from side A to side B.
Algorithm realization
Declare a stack s, thet will contain the cars at the station.
stack<int> s;
Process input tests sequentially.
while(scanf("%d",&n),n)

{

 while(scanf("%d",&x),x)

 {

 cur = ok = 1;

Before processing the data of the next test, clear the stack.
 while(!s.empty()) s.pop();

Process the input sequence.
 for(i = 1; i < n; i++)

 {

Move the car with number x to the side B. If the car with the number x is on the side A, push all cars up to x inclusive to the stack.
 for(;cur <= x; cur++) s.push(cur);

If the car at the top of the stack has number that does not equal to x, then required sorting is impossible (in this case, set ok = 0).
 if (s.top() != x) ok = 0;

 s.pop();

 scanf("%d",&x);

 }

Depending on the value of the variable ok, print the answer.
 printf(ok ? "Yes\n" : "No\n");

 }

 printf("\n");

}

Java realization
Using the Scanner class gives Time Limit.

import java.util.*;
public class Main
{
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 int n;
 while((n = con.nextInt()) != 0)
 {
 int x, cur, ok;
 while((x = con.nextInt()) != 0)
 {
 cur = ok = 1;
 Stack<Integer> s = new Stack<Integer>();
 for(int i = 1; i < n; i++)
 {
 for(; cur <= x; cur++) s.push(cur);
 if (s.peek() != x) ok = 0;
 s.pop();
 x = con.nextInt();
 }
 String Answer = (ok == 1) ? "Yes" : "No";
 System.out.println(Answer);
 }
 System.out.println("");

 }
 con.close();
 }
}
Java realization – FastScanner
import java.util.*;
import java.io.*;
public class Main
{
 public static void main(String[] args)
 {
 FastScanner con =
 new FastScanner(new InputStreamReader(System.in));
 int n;
 while((n = con.nextInt()) != 0)
 {
 int x, cur, ok;
 while((x = con.nextInt()) != 0)
 {
 cur = ok = 1;
 Stack<Integer> s = new Stack<Integer>();
 for(int i = 1; i < n; i++)
 {
 for(; cur <= x; cur++) s.push(cur);
 if (s.peek() != x) ok = 0;
 s.pop();
 x = con.nextInt();
 }
 String Answer = (ok == 1) ? "Yes" : "No";
 System.out.println(Answer);
 }
 System.out.println("");

 }
 }
}
class FastScanner
{
 private BufferedReader br;
 private StringTokenizer st;
 public FastScanner(InputStreamReader reader)
 {
 br = new BufferedReader(reader);
 }
 public String next()
 {
 while (st == null || !st.hasMoreTokens())
 {
 try
 {
 st = new StringTokenizer(br.readLine());
 } catch (Exception e)
 {
 e.printStackTrace();
 }
 }
 return st.nextToken();
 }
 public int nextInt()
 {
 return Integer.parseInt(next());
 }
 public double nextDouble()
 {
 return Double.parseDouble(next());
 }
 public void close() throws Exception
 {
 br.close();
 }
}
Java realization – buffer reading
import java.util.*;
import java.io.*;
import java.util.Stack;
public class Main
{
 public static void main(String[] args)
 throws Exception
 {
 BufferedReader in =
 new BufferedReader(new InputStreamReader(System.in));
 String Line;
 while(!(Line = in.readLine()).equals("0"))
 {
 int n = Integer.parseInt(Line);

 int cur, ok;
 String Line1;
 while(!(Line1 = in.readLine()).equals("0"))
 {
 StringTokenizer st = new StringTokenizer(Line1);
 int x = Integer.parseInt(st.nextToken());
 cur = ok = 1;
 Stack<Integer> s = new Stack<Integer>();
 for(int i = 1; i < n; i++)
 {
 for(; cur <= x; cur++) s.push(cur);
 if (s.peek() != x) ok = 0;
 s.pop();
 x = Integer.parseInt(st.nextToken());
 }
 String Answer = (ok == 1) ? "Yes" : "No";
 System.out.println(Answer);
 }
 System.out.println("");

 }
 }
}
Java realization – own class Stack
import java.util.*;
import java.io.*;
public class Main
{
 public static class ArrayStack implements Stack
 {
 private int top;
 private int[] storage;
 ArrayStack(int capacity)
 {
 if (capacity <= 0)

 throw new IllegalArgumentException

 ("Stack's capacity must be positive");
 storage = new int[capacity];
 top = -1;
 }
 public void push(int value)
 {
 if (top == storage.length)
 throw new
 StackException("Stack's underlying storage is overflow");
 top++;
 storage[top] = value;
 }
 public int peek()
 {
 if (top == -1)
 throw new StackException("Stack is empty");
 return storage[top];
 }
 public void pop()
 {
 if (top == -1)
 throw new StackException("Stack is empty");
 top--;
 }
 public boolean isEmpty()
 {
 return (top == -1);
 }
 public class StackException extends RuntimeException
 {
 public StackException(String message)
 {
 super(message);
 }
 }
 }
 public interface Stack
 {
 void push(int value);
 int peek();
 void pop();
 boolean isEmpty();
 }
 public static void main(String[] args)
 throws Exception
 {
 BufferedReader in =
 new BufferedReader(new InputStreamReader(System.in));
 String Line;
 while(!(Line = in.readLine()).equals("0"))
 {
 int n = Integer.parseInt(Line);

 int cur, ok;
 String Line1;
 while(!(Line1 = in.readLine()).equals("0"))
 {
 StringTokenizer st = new StringTokenizer(Line1);
 int x = Integer.parseInt(st.nextToken());
 cur = ok = 1;
 ArrayStack s = new ArrayStack(2000);
 for(int i = 1; i < n; i++)
 {
 for(; cur <= x; cur++) s.push(cur);
 if (s.peek() != x) ok = 0;
 s.pop();
 x = Integer.parseInt(st.nextToken());
 }
 String Answer = (ok == 1) ? "Yes" : "No";
 System.out.println(Answer);
 }
 System.out.println("");

 }
 }
}
_1663863429.vsd
B

A

B

A

1

k + 1

...

2

...

k

1

2

...

k - 1

n

n

