115. Two digits
How many n-digit numbers can be created using only digits 5 and 9, where no three identical digits stand side by side?
Input. One number n (n ≤ 30).
Output. The amount of n-digit numbers.
	Sample input
	Sample output

	3
	6

SOLUTION
dynamic programming
Algorithm analysis

There are only two desired single-digit numbers: 5 and 9.
There are four desired two-digit numbers: 55, 59, 95 and 99.
We shall construct the desired n-digit numbers as follows. Take all the constructed (n – 1) - digit numbers and append to them a digit that does not match their last digit. This way, we obtain n-digit numbers ending in 559, 595, 959 and 995.

[image: image1.emf]. . . 9 5 5

. . . 5 9 5

. . . 9 5 9

. . . 5 9 9

n–1

. . . 9 9 5

. . . 5 5 9

n–2

To the n-digit numbers, we will also include those that can be obtained from (n – 2)-digit numbers by appending two fives or two nines so that three consecutive identical digits are not obtained. That is, to the n-digit numbers, we add those that end in 599 and 955.

If we denote the number of desired n-digit numbers as f(n), then we obtain the recurrence:
f(n) = f(n – 1) + f(n – 2), f(1) = 2, f(2) = 4
Example
There are four two-digit numbers: 55, 59, 95 and 99.
There are six three-digit numbers: 559, 595, 959, 995, 599 and 955.

The set of all desired four-digit numbers we can get from:
· three-digit numbers by appending a digit different from the last one: 5595, 5959, 9595, 9959, 5995 and 9559.
· two-digit numbers by appending 55 or 99 to them so as not to obtain three identical digits: 5599, 5955, 9599 and 9955.

[image: image2.emf]5 5 9 5

5 9 5 9

9 5 9 5

9 9 5 9

5 9 9 5

9 5 5 9

5 5 9 9

5 9 5 5

9 5 9 9

9 9 5 5

Algorithm realization

The value of f(i) will be stored in cell m[i].
int m[31];
Read the input value of n.
scanf("%d", &n);

Store the values f(1) = 2 and f(2) = 4 in the array.

m[1] = 2; m[2] = 4;
Compute the values m[i] (3 ≤ i ≤ n) according to the recurrence formula.
for(i = 3; i <= n; i++)
 m[i] = m[i-1] + m[i-2];
Print the answer – the value of m[n].

printf("%d\n",m[n]);
Java realization
import java.util.*;
public class Main
{
 public static int MAX = 32;
 static int m[] = new int[MAX];
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 int n = con.nextInt();
 m[1] = 2; m[2] = 4;
 for(int i = 3; i <= n; i++) m[i] = m[i-1] + m[i-2];
 System.out.println(m[n]);
 }
}
Python realization
Read the input value of n.
n = int(input())
Initialize a list m.
m = [0] * 31
Store the values f(1) = 2 and f(2) = 4 in the list.

m[1] = 2
m[2] = 4
Compute the values m[i] (3 ≤ i ≤ n) according to the recurrence formula.
for i in range(3, n + 1):

 m[i] = m[i - 1] + m[i - 2]

Print the answer – the value of m[n].

print(m[n])

_1769266256.vsd
. . .

9

5

5

. . .

5

9

5

. . .

9

5

9

. . .

5

9

9

n – 1

. . .

9

9

5

. . .

5

5

9

n – 2

_1484598630.vsd
5

5

9

9

5

9

5

5

9

5

9

5

5

9

5

9

9

5

9

5

9

9

5

9

5

5

9

9

5

9

5

5

9

5

9

9

9

9

5

5

