1941. Parent
Write a program that determines for two nodes of a tree whether the first one is a parent of another.

Input. The first line contains the number of vertices n (1 ≤ n ≤ 105) in a tree. The second line contains n numbers, the i-th one gives the vertex number of direct ancestor for the vertex i. If this value is zero, then the vertex is a root of a tree.

The third line contains the number of queries m (1 ≤ m ≤ 105). Each of the next m lines contains two different numbers a and b (1 ≤ a, b ≤ n).

Output. For each of the m queries print on a separate line number 1, if the vertex a is one of the parents of a vertex b, and 0 otherwise.
	Sample input
	Sample output

	6

0 1 1 2 3 3

5

4 1

1 4

3 6

2 6

6 5
	0

1

1

0

0

SOLUTION
graphs – depth first search
Algorithm analysis
The tree will be stored as a directed graph, in which the edges go from ancestors to sons (to save memory). Run depth first search on it, compute the timestamps d[v] and f[v] for each vertex v. Vertex a is one of the ancestors of vertex b if d[a] < d[b] < f[b] < f[a]. It means that interval [d[b]; f[b]] must be included in the interval [d[a]; f[a]].

But since the inequality d[b] < f[b] is always satisfied for each vertex b, then for each input pair of vertices (query) a and b it is sufficient to check the inequalities d[a] < d[b] and f[b] < f[a].
Example
Graph given in a sample, with timestamps, is as follows:

[image: image1.emf]1

2 3

4 5 6

1/12

2/5

3/4

6/11

7/8 9/10

For example, 1 is the ancestor of 5, since d[1] < d[5] и f[5] < f[1]. Indeed, the interval [7; 8] is included in [1; 12].
Algorithm realization
Since the number of vertices in the graph is large, store the graph in an adjacency list g. The array used is used to mark the already visited vertices. Store the timestamps of entry and exit from the vertex in arrays d and f.
vector<vector<int> > g;

vector<int> used, d, f;

Run the function dfs of depth first search. Place the timestamps d[v] and f[v].
void dfs(int v)

{

 used[v] = 1; d[v] = time++;

 for(int i = 0; i < g[v].size(); i++)

 {

 int to = g[v][i];

 if (!used[to]) dfs(to);

 }

 f[v] = time++;

}

Function is_Parent returns 1, if a is the ancestor of b, and 0 otherwise. Check the fulfillment of two inequalities d[a] < d[b] and f[b] < f[a].

int is_Parent(int a, int b)

{

 return (d[a] < d[b]) && (f[b] < f[a]);

}

The main part of the program. Read the input graph. If vertex a is the parent of vertex i, then add a directed edge (a, i) to the graph (to save memory, you can use a directed graph). The vertices of the graph are numbered from 1 to n. If a = 0, then the vertex i is a root, in this case no edge needs to be added. In the variable root store the number of the vertex that is the root of the tree.
scanf("%d",&n);

g.resize(n+1); used.resize(n+1);

d.resize(n+1); f.resize(n+1);

for(i = 1; i <= n; i++)

{

 scanf("%d",&a);

 if(!a) root = i; else g[a].push_back(i);

}

Run the depth first search from the root of the tree root.
dfs(root);

Read the queries and print the answers to each of them in constant time.
scanf("%d",&m);

for(i = 0; i < m; i++)

{

 scanf("%d %d",&a,&b);

 printf("%d\n",is_Parent(a,b));

}

_1667807380.vsd
1

2

3

4

5

6

1/12

2/5

3/4

6/11

7/8

9/10

