2267. Journey
The army of the Polish–Lithuanian Commonwealth is marching from the city of Kostroma to the village of Domnino. The army is led by two hetmans – Stefan and Konstantin.

Stefan has a map of the Kostroma region, which shows all the roads between villages. Each night, he leads the army from one village to another using one of these roads. Konstantin, on the other hand, has obtained a map of secret trails, and during the day, he leads the army along one of these paths. Before each movement, each hetman consults the guide, Ivan Susanin, to determine the best route.

Stefan’s map shows the length of each road, so he can calculate the shortest distance from any village to Domnino using his map. Similarly, Konstantin knows the shortest distances according to his map of trails.

Ivan Susanin, being a secret agent, wants to avoid raising suspicion. Therefore, each time he selects a road (for Stefan) and a trail (for Konstantin) such that the shortest distance to the village of Domnino, according to the respective hetman’s map, strictly decreases.

Help Ivan determine the maximum possible length of the route to the village of Domnino.

Input. The first line contains three integers n, s and t (2 ≤ n ≤ 1000, 1 ≤ s, t ≤ n) – the number of villages in the Kostroma region, the starting village number, and the village number of Domnino, respectively. Villages are numbered from 1 to n. It is guaranteed that s ≠ t.

Then follow two blocks, each describing a map: the first block is Stefan’s map, the second one is Konstantin’s.

The first line of each block contains an integer m (n – 1 ≤ m ≤ 105) – the number of roads or trails. Each of the following m lines contains three integers a, b and l (1 ≤ a, b ≤ n, 1 ≤ l ≤ 106) describing a connection between villages a and b of length l.

Movement along roads and trails is allowed in both directions. It is guaranteed that each map allows travel between any pair of villages. The army begins its journey in the evening from village s, traveling one road per night and one trail per day.

Output. Print a single integer – the maximum possible length of the route to village Domnino (considering alternating road and trail movement). If Ivan Susanin can lead the army indefinitely without reaching Domnino, print “-1”.

	Sample input 1
	Sample output 1

	5 1 5

5

1 2 2

1 4 2

2 3 1

3 4 1

5 3 1

4

1 2 2

2 4 2

2 3 1

2 5 2
	-1

	
	

	Sample input 2
	Sample output 2

	3 1 3

4

1 2 10

2 3 10

1 3 20

2 3 30

4

2 1 10

1 3 10

1 1 10

2 3 10
	20

SOLUTION
graphs – Dijkstra
Algorithm analysis

Сonstruct two graphs: the road graph g[0] and the trail graph g[1]. Next, compute the shortest distances from the village Domnino t to all villages:
· According to Stefan’s map: d[0][i] – the minimum distance from t to village i;
· According to Konstantin’s map: d[1][i] – the minimum distance from t to village i;
Then consider a graph whose vertices are pairs (v, parity):

· v – the village number;

· parity = 0 (night, movement along roads), parity = 1 (day, movement along trails).
The army starts its journey in the evening from the initial village, moving at night along a road (parity = 0). Run a depth-first search from the vertex (s, 0) following these rules:
· from (v, 0) (night) go along a road to (u, 1) if d[0][u] < d[0][v];
· from (v, 1) (day) go along a trail to (u, 0) if d[1][u] < d[1][v].
Being in the state (v, parity), consider only allowed transitions – that is, those for which the distance to Domnino strictly decreases. Among these, look for the path of maximum length.

Recall that each of the hetmans tries to move so that the distance according to their own map decreases (however, they are not required to follow the shortest path).

During the depth-first search, maintain the following dynamic programming state:

· dp[type][v] – the maximum length of a path from v to t, starting from phase type.
For each allowed transition:
· Recursively call dfs(to, type ^ 1) – transition to the opposite phase.
· Update the value of dp[type][v]:

dp[type][v] = max(dp[type][v], dp[type ^ 1][to] + weight);
Thus, we choose the best next move that leads to the maximum total path length. This is analogous to the standard longest path search in a DAG (directed acyclic graph), where the direction of edges is determined by the decrease in shortest distance.

Movement is allowed only along edges leading to vertices with a smaller distance to Domnino. However, the problem involves two graphs – two types of edges: roads and trails – and transitions between them alternate: night (road), day (trail), night, day, and so on. It is precisely because of this alternation of maps (roads and trails) that a cycle may arise between vertices, even though in each individual graph (for one map) the movement always goes along decreasing distances.

If during the depth-first search we encounter a vertex that is already in the processing stack, it means a cycle has been detected.

Algorithm implementation
Declare the constants.
#define INF 2e18

#define MAXN 1005

Let’s declare the data structures used:
· g[0] and g[1] – adjacency lists for the road and trail graphs, respectively.
· d[0] and d[1] – shortest distances from the village Domnino t to all other villages.
· dp[0] and dp[1] – the maximum path length from vertex v to t, if starting from v along the road (type = 0) or along the trail (type = 1).
· used[0] and used[1] – vertex visitation markers for depth-first search in the road and trail graphs, respectively.
vector<pair<int, int>> g[2][MAXN];

long long d[2][MAXN];

long long dp[2][MAXN];

int used[2][MAXN];

The function dijkstra calculates the shortest distances from the village Domnino t to all other villages either along the roads (type = 0) or along the trails (type = 1).
void dijkstra(int type)

{

 for (int i = 1; i <= n; i++)

 d[type][i] = INF;

 d[type][t] = 0;

 priority_queue<pair<long long, int>, vector<pair<long long, int>>, greater<pair<long long, int>>> pq;

 pq.push({ 0, t });

 while (!pq.empty())

 {

 pair<long long, int> top = pq.top();

 pq.pop();

 long long dist = top.first;

 int v = top.second;

 if (dist > d[type][v]) continue;

 for (auto edge : g[type][v])

 {

 int to = edge.first;

 int w = edge.second;

 if (d[type][to] > d[type][v] + w)

 {

 d[type][to] = d[type][v] + w;

 pq.push({ d[type][to], to });

 }

 }

 }

}

The dfs function performs a depth-first search and finds the longest path while moving through alternating maps, starting from village v along the road (type = 0) or along the trail (type = 1). If during such alternating movement a cycle is detected, the function returns -1.
void dfs(int v, int type)

{
Vertex v in the graph g[type] is marked as gray.
 used[type][v] = 1;
Initialize the dynamic programming state.
 dp[type][v] = 0;

Iterate over the edges outgoing from vertex v in the graph g[type].

 for (auto edge : g[type][v])

 {

 int to = edge.first;

 int weight = edge.second;

A transition from vertex v to vertex to is allowed only if the distance from to to Domnino is less than the distance from v to Domnino.
 if (d[type][to] < d[type][v])

 {

If the vertex to in the graph g[type ^ 1] is already in the process of being visited (marked as “gray”), then a cycle has been detected – return -1.
 if (used[type ^ 1][to] == 1)

 {

 cout << -1 << endl;

 exit(0);

 }

If the vertex to in the graph g[type ^ 1] has not yet been visited, continue the depth-first search from it.
 if (used[type ^ 1][to] == 0)

 dfs(to, type ^ 1);

After processing all allowed transitions, update the dynamic programming state by selecting the maximum path length from vertex v in the graph g[type] to Domnino.
 dp[type][v] = max(dp[type][v], dp[type ^ 1][to] + weight);

 }

 }
Vertex v in the graph g[type] is marked black.
 used[type][v] = 2;

}

The main part of the program. Read the input data and construct the road and trail graphs.
scanf("%d %d %d", &n, &s, &t);

scanf("%d", &m1);

for (i = 0; i < m1; i++)

{

 scanf("%d %d %d", &a, &b, &len);

 g[0][a].push_back({ b, len });

 g[0][b].push_back({ a, len });

}

scanf("%d", &m2);

for (i = 0; i < m2; i++)

{

 scanf("%d %d %d", &a, &b, &len);

 g[1][a].push_back({ b, len });

 g[1][b].push_back({ a, len });

}

Calculate the shortest distances from the village Domnino t to all other villages – separately for the road map and for the trail map.
dijkstra(0);

dijkstra(1);

Using depth - first search, find the longest path while moving through alternating maps, starting from the village s along the road.
dfs(s, 0);
Print the answer. The starting point is village s, and the movement begins on the road.
printf("%lld\n", dp[0][s]);

