2390. Partitions into summands
List all partitions of the positive integer n into a sum of positive integers. The partitions must satisfy the following conditions:

· The summands in each partition are arranged in non-increasing order.

· All partitions are listed in lexicographical order.

Input. One positive integer n (1 ≤ n ≤ 40).

Output. Print all valid partitions, each on a separate line.

	Sample input
	Sample output

	4
	1 1 1 1

2 1 1

2 2

3 1

4

SOLUTION
combinatorics
Algorithm analysis

Let n = x1 + x2 + … + xk be a partition of the number n into natural summands. According to the problem statement, the summands in any partition must satisfy the inequality:
x1  x2  …  xk
The first summand x1​ can take values from 1 to n, and each subsequent xi (2  i  k) can take values from 1 to xi-1.
The recursive idea behind the partition generation procedure is as follows: if, when partitioning the number n, the first summand x1 (x1  n) is chosen, then one should recursively generate all possible partitions of the number n – x1​ into summands that do not exceed x1.
Algorithm implementation
We’ll use the array x to generate the partitions of the number n.
int x[50];

The function f generates the partitions of the number n and takes three arguments:
· pos – the current position in the array x;
· max – the maximum allowed value of the summand that can be placed at position pos;
· n – the current value of the number to be partitioned.
void f(int pos, int max, int n)

{
If the value of n becomes zero, it means the partition is complete, and the current contents of the array x represent one of the partitions. In this case, we print the array.
 if (n == 0)

 {

 for (int i = 0; i < pos; i++)

 printf("%d ", x[i]);

 printf("\n");

 return;

 }

At position pos of the array x, any number from 1 to min(max, n) can be placed.
 for (int i = 1; i <= min(max, n); i++)

 {

 x[pos] = i;

 f(pos + 1, i, n - i);

 }

}
The main part of the program. Read the input value n and start the function to generate all possible partitions of this number.
scanf("%d",&n);
f(0,n,n);
