2613. Maximum sum
Given a table with integers of size n ⋅ n. Find in it the rectangle with maximum sum. For example, in the table

[image: image1.png]

the rectangle with maximum sum is

[image: image2.png]

Sum of its elements equals to 15.
Input. First number n (n ≤ 500) is the size of the table. Then n2 integers are given that describes the table. It is known that all numbers are integers in the range [-127, 127]. It is known that the table contains at least one nonnegative integer.
Output. Print the maximum sum in rectangle.
	Sample input
	Sample output

	4

0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2
	15

SOLUTION
dynamic programming
Algorithm analysis
Let the input table be stored in the array table, with the top left cell stored in table[1][1].
Recompute its elements in such a way that _table[i][j] =
[image: image3.wmf]å

=

i

k

j

k

table

1

]

][

[

. That is, _table[i][j] contains the sum of the elements of table[i][j] that are in the same column, but not below the element (i, j).
Now the sum of the numbers s of any rectangle with the upper left corner (i1, j1) and the lower right corner (i2, j2) can be calculated in linear time:
s =
[image: image4.wmf](

)

å

=

-

-

2

1

]

][

1

[

_

]

][

[

_

1

2

j

j

k

k

i

table

k

i

table

On the left there is an input table, on the right there is a transformed one.

[image: image5.emf]0-2-70

92-62

-41-41

-180-2

0-2-70

90-132

51-173

49-171

For example
_table[3][3] = table[1][3] + table[2][3] + table[3][3] = -7 – 6 – 4 = -17,

_table[4][4] = table[1][4] + table[2][4] + table[3][4] + table[4][4] =
0 + 2 + 1 – 2 = 1

The sum of the numbers in the rectangle (2, 1) – (4, 2) is equal to

[image: image6.wmf](

)

å

=

-

2

1

]

][

1

[

_

]

][

4

[

_

k

k

table

k

table

 =

[image: image7.wmf](

)

(

)

]

2

][

1

[

_

]

2

][

4

[

_

]

1

][

1

[

_

]

1

][

4

[

_

table

table

table

table

-

+

-

 =
(4 – 0) + (9 – (-2)) = 15

Let’s fix two lines i and j. Now let’s find the size of the maximum rectangle that touches line i from above and line j from below (both lines inclusive). Construct a sequence A of numbers a1, a2, …, an, for which ak = _table[j][k] – _table[i – 1][k]. It remains to find a subsequence of consecutive numbers in sequence A that has the maximum possible sum. This is a well-known one-dimensional problem that can be solved through partial sums sk = a1 + … + ak (as soon as the partial sum becomes less than 0, we reset it to zero and continue to count).

[image: image8.emf]0-2-70

90-132

51-173

49-171

i = 2

j = 4

411-101a

41556s

0-2-70

90-132

51-173

49-171

i = 1

j = 3

51-173a

56

-11

0

3s

The maximum rectangle between:

· rows 2 and 4 has sum 15;

· rows 1 and 3 has sum 6;

Algorithm realization

Declare an array.
#define MAX 502

int table[MAX][MAX];

Read the input data.

scanf("%d", &n);

memset(table,0,sizeof(table));

for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)

 scanf("%d",&table[i][j]);

Recompute the array table.

for (j = 1; j <= n; j++)

for (i = 1; i <= n; i++)

 table[i][j] = table[i - 1][j] + table[i][j];

We look for a rectangle with the maximum sum. Iterate over rows i and j (1 ≤ i ≤ j ≤ n). Next, calculate the partial sums sk and solve the one-dimensional problem.
for (i = 1; i <= n; i++)

for (j = i; j <= n; j++)

{

 t = 0;

 for (k = 1; k <= n; k++)

 {

 t += table[j][k] - table[i-1][k];

 if (t < 0) t = 0;

 if (t > max) max = t;

 }

}

Print the sum in the maximum rectangle.
printf("%d\n", max);

_1586177510.unknown

_1586177592.unknown

_1586177593.unknown

_1586177591.unknown

_1550664774.vsd
0

-2

-7

0

9

2

-6

2

-4

1

-4

1

-1

8

0

-2

0

-2

-7

0

9

0

-13

2

5

1

-17

3

4

9

-17

1

_1550667778.vsd
i = 2

j = 4

4

11

-10

1

a

4

15

5

6

s

0

-2

-7

0

0

-2

-7

0

9

0

-13

2

5

1

-17

3

4

9

-17

1

9

0

-13

2

5

1

-17

3

4

9

-17

1

i = 1

j = 3

5

1

-17

3

a

5

6

-11
0

3

s

