291. Garage
A parking garage has n parking spaces, numbered from 1 to n inclusive. The garage opens empty each morning and operates in the following way throughout the day. Whenever a car arrives at the garage, the attendants check whether there are any parking spaces available. If there are none, then the car waits at the entrance until a parking space is released. If a parking space is available, or as soon as one becomes available, the car is parked in the available parking space. If there is more than one available parking space, the car will be parked at the space with the smallest number. If more cars arrive while some car is waiting, they all line up in a queue at the entrance, in the order in which they arrived. Then, when a parking space becomes available, the first car in the queue (i.e., the one that arrived the earliest) is parked there.

The cost of parking in dollars is the weight of the car in kilograms multiplied by the specific rate of its parking space. The cost does not depend on how long a car stays in the garage.

The garage operator knows that today there will be m cars coming and he knows the order of their arrivals and departures. Help him calculate how many dollars his revenue is going to be today.

Write a program that, given the specific rates of the parking spaces, the weights of the cars and the order in which the cars arrive and depart, determines the total revenue of the garage in dollars.

Input. The first line contains two integers – the number of parking spaces n (1 ≤ n ≤ 100) and the number of cars m (1 ≤ m ≤ 2,000), separated by a space.

The next n lines describe the rates of the parking spaces. The s-th of these lines contains a single integer rs (1 ≤ rs ≤ 100), the rate of parking space number s in dollars per kilogram.

The next m lines describe the weights of the cars. The cars are numbered from 1 to m inclusive in no particular order. The k-th of these m lines contains a single integer wk (1 ≤ wk ≤ 10,000), the weight of car k in kilograms.

The next 2m lines describe the arrivals and departures of all cars in chronological order. A positive integer i indicates that car number i arrives at the garage. A negative integer -i indicates that car number i departs from the garage. No car will depart from the garage before it has arrived, and all cars from 1 to m inclusive will appear exactly twice in this sequence, once arriving and once departing. Moreover, no car will depart from the garage before it has parked (i.e., no car will leave while waiting on the queue).

Output. One integer – the total number of dollars that will be earned by the garage operator today.
	Sample input
	Sample output

	3 4

2

3

5

200

100

300

800

3

2

-3

1

4

-4

-2

-1
	5300

SOLUTION
data structures
Algorithm analysis

Using data structures, simulate the process of car movement. Store information about empty parking spaces in the set s. Thus, the search for a free parking lot with the lowest number will be performed in O(log2n). For each car, using the map structure, remember the parking space where it was parked. When the car leaves, in O(log2n) it is possible to find the parking number that it frees up.

Since the entrance and the exit of a car from the parking lot is simulated in O(log2n), the total running time of the algorithm is O(mlog2n).

Algorithm realization

Store the cost of parking spaces in the array price, and the car weights in the array weight. The set s stores the numbers of empty parking places. Thus s.begin() contains the free parking place with minimum number. In the map mp store the information about the cars that are parked. Equality mp[car] = ParkingPlace means that car with number car is parked in the place number ParkingPlace. Store the queue of cars waiting for parking spaces in queue d.
int price[101], weight[2001];

set<int> s;

map<int,int> mp;

deque<int> d;

Read the input data.

scanf("%d %d",&n,&m);

Add a list of free parking spaces to the set s. Initially, all parking lots from 1 to n are free.
for(i = 1; i <= n; i++) s.insert(i);

Read the cost of parking spaces and weights of vehicles.
for(i = 1; i <= n; i++) scanf("%d",&price[i]);

for(i = 1; i <= m; i++) scanf("%d",&weight[i]);

Sequentially read and process the commands about the arrival and departure of the cars.
for(res = 0, i = 1; i <= 2 * m; i++)

{

 scanf("%d",&car);

The car drives into the parking lot.
 if (car > 0)

 {

If the set of free parking spaces s is not empty, then there is at least one place where the car can be parked.
 if (!s.empty())

 {

Assign ParkingPlace to the smallest number of free parking space.
 ParkingPlace = *s.begin();

Add the parking lot profit to the result res.
 res += weight[car] * price[ParkingPlace];

A car just arrived at the place s.begin(). Mark it as used – remove it from the set s.
 s.erase(s.begin());

A car number car has just been parked at the place number ParkingPlace.
 mp[car] = ParkingPlace;

 } else

 {

There are no free parking spaces, put the car in queue d.
 d.push_back(car);

 }

 }

 else

Consider the case when car < 0. The car number -car departs from the lot number mp[-car]. The number of the parking lot where the car with number -car is located can be found with complexity O(log2n) using the map mp.
 {

 ParkingPlace = mp[-car];

If there is a queue of waiting cars, then you should move the first car in the queue to the newly vacated place ParkingPlace.
 if (!d.empty())

 {

 car = d[0];

 res += weight[car] * price[ParkingPlace];

 mp[car] = ParkingPlace;

 d.pop_front();

 }

 else

If there is no one in the queue, then free up the parking space ParkingPlace.
 s.insert(ParkingPlace);
 }

}

Print the total profit of the garage operator.
printf("%d\n",res);

