2923. Tree
The hanging tree contains n (1 ≤ n ≤ 106) vertices. Each vertex is colored in one of n colors. For each vertex v find the number of different colors, occurring in the subtree with root v.
Input. The first line contains the number n. The next n lines describe the vertices. The description of the vertex i has the form pi ci, where pi is the parent number of the vertex i, and ci is the color of the vertex i (1 ≤ ci ≤ n). For the root of the tree pi = 0.
Output. Print n numbers, denoting the number of different colors in the subtrees rooted at the vertices 1, 2, ..., n.
	Sample input
	Sample output

	5

2 1

3 2

0 3

3 3

2 1
	1 2 3 1 1

SOLUTION
graphs, depth first search
Algorithm analysis
Let’s start a depth-first search from the root of the tree. For each vertex i, store a set si, where we’ll accumulate the colors of the vertices in its subtrees. If j is the son of vertex i during a depth-first search, then sj must be included in si. The number of distinct colors in the subtree rooted at i equals the size of the set si.
Example
On the left, near each vertex, its color is given. On the right, near each vertex, the set of colors in a subtree rooted at it is given.

[image: image1.emf]3

2

4

1 5 1 1

2

3

3

3

2

4

1 5 {1} {1}

{1,2}

{1,2,3}

{3}

Algorithm realization
In color[i] keep the color of the i-th vertex. In the set s[i] we’ll accumulate colors in the subtree with root i. Store the directed tree in the adjacency list g. In res[i] store the number of different colors in the subtree rooted at i.
#define MAX 1000010

int color[MAX], res[MAX];

set<int> s[MAX];

vector<vector<int> > g;

Function dfs starts the depth-first search from the vertex v. Initially, put in s[v] the color of the vertex v. For each edge of the tree (v, to) add the set s[to] to s[v]. The number of different colors in the subtree with the root v equals the size of the set s[v], store it in res[v].
void dfs(int v)

{

 int i, to;

 s[v].insert(color[v]);

 for(i = 0; i < g[v].size(); i++)

 {

 to = g[v][i];

 dfs(to);
If the size of the set s[v] is less than the size of the set s[to], swap them. Next, the content of the smaller set s[to] is added to the set s[v].
 if (s[v].size() < s[to].size()) s[v].swap(s[to]);

 s[v].insert(s[to].begin(), s[to].end());

Clear the set s[to] – it will no longer be useful to us.
 s[to].clear();

 }

 res[v] = s[v].size();

}

The main part of the program. Read the input data.
scanf("%d",&n);

g.resize(n+1);

for(i = 1; i <= n; i++)

{

 scanf("%d %d",&p,&c);

 g[p].push_back(i);

 color[i] = c;

}

Start the depth-first search from the root of the tree – the vertex number zero.
dfs(0);

Print the answer.
for(i = 1; i <= n; i++)

 printf("%d ",res[i]);

printf("\n");

_1645899732.vsd
3

2

4

1

5

1

1

2

3

3

3

2

4

1

5

{1}

{1}

{1,2}

{1,2,3}

{3}

