3165. Bicoloring
In 1976 the “Four Color Map Theorem” was proven with the assistance of a computer. This theorem states that every map can be colored using only four colors, in such a way that no region is colored using the same color as a neighbor region.

Here you are asked to solve a simpler similar problem. You have to decide whether a given arbitrary connected graph can be bicolored. That is, if one can assign colors (from a palette of two) to the nodes in such a way that no two adjacent nodes have the same color. To simplify the problem you can assume:

· no node will have an edge to itself.

· the graph is nondirected. That is, if a node a is said to be connected to a node b, then you must assume that b is connected to a.

· the graph will be connected. That is, there will be at least one path from any node to any other node.
Input. Consists of several test cases. Each test case starts with a line containing the number n (0 ≤ n ≤ 1000) of different nodes. The second line contains the number of edges l (1 ≤ l ≤ 250000). After this l lines will follow, each containing two numbers that specify an edge between the two nodes that they represent. A node in the graph will be labeled using a number a (1 ≤ a ≤ n). The last test contains n = 0 and is not to be processed.
Output. You have to decide whether the input graph can be bicolored or not, and print it as shown below.
	Sample input
	Sample output

	3

3

1 2

2 3

3 1

8

12

1 2

2 4

3 4

3 1

3 7

7 6

4 6

1 6

2 5

5 6

4 8

5 8

0
	NOT BICOLOURABLE.

BICOLOURABLE.

SOLUTION

depth first search
Algorithm analysis
To solve the problem, let’s use depth-first search. Initially, the vertices are not visited, mark them all with color 0. As we go through the vertices, paint them in two colors: 1 and 2. If the current vertex has color i (i = 1, 2), then the next vertex, that we get at depth-first search, paint with color 3 – i. At the same time, check that two adjacent vertices are not painted with the same color.
Example
The graphs given in the samples are as follows:

[image: image1.emf]1 2

3 ?

1 2

3 4

5

6

8

7

Algorithm realization
Store the adjacency matrix of the graph in array g of size MAX = 1001 (the vertices are numbered from 1 to n ≤ 1000). The array used contains information about the vertex color. The global variable Error is responsible for the correctness of the coloring: as soon as there will be found two adjacent vertices, colored in one color, the variable Error will take the value 1.
#define MAX 1000

int g[MAX][MAX], used[MAX], Error;

The dfs function performs a depth-first search. Two parameters are passed to it: the current vertex v and its color color. If the case of impossibility of the required coloring has already occurred (Error = 1), then exit.
void dfs(int v,int color)

{

If the case of impossibility of the required coloring has already occurred (Error = 1), then exit.
 if (Error) return;
Mark the vertex v with color color.
 used[v] = color;
Look for an unvisited vertex i, that can be reached by continuing the depth first search. In this case, if the neighboring vertex i is already visited, check the condition that vertices v and i are colored in different colors. If these vertices are painted the same color, set Error = 1.
 for(int i = 1; i <= n; i++)

 if (g[v][i])

 if (!used[i]) dfs(i,3-color); else

 if (used[v] == used[i]) Error = 1;

}

The main part of the program. Read the number of vertices n and the number of edges l of the graph. Set to zero the adjacency matrix and the array used.
while(scanf("%d %d",&n,&l), n)

{

 memset(g,0,sizeof(g));

 memset(used,0,sizeof(used));

Read the graph.

 for(i = 0; i < l; i++)

 {

 scanf("%d %d",&a,&b);

 g[a][b] = g[b][a] = 1;

 }

Set the value of the variable Error to zero, and start the depth first search from the vertex 1, panting it with color 1.
 Error = 0; dfs(1,1);

Print the result depending on the value of the variable Error.
 if (Error) printf("NOT BICOLOURABLE.\n");

 else printf("BICOLOURABLE.\n");

}

Java realization
import java.util.*;
public class Main
{
 static int g[][], used[];
 static int n, l, Error;
 static void dfs(int v,int color)
 {
 if (Error == 1) return;
 used[v] = color;
 for(int i = 1; i <= n; i++)
 if (g[v][i] == 1)
 {
 if (used[i] == 0) dfs(i,3-color);else
 if (used[v] == used[i]) Error = 1;
 }
 }
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 while(true)
 {
 n = con.nextInt();
 if (n == 0) break;
 l = con.nextInt();
 g = new int[n+1][n+1];
 used = new int[n+1];
 for(int i = 0; i < l; i++)
 {
 int a = con.nextInt();
 int b = con.nextInt();
 g[a][b] = g[b][a] = 1;
 }
 Error = 0;
 dfs(1,1);
 if (Error == 1) System.out.println("NOT BICOLOURABLE.");
 else System.out.println("BICOLOURABLE.");
 }
 con.close();
 }
}
_1649665670.vsd
1

2

3 ?

1

2

3

4

5

6

8

7

