3838. Frequent values
You are given a sequence of n integers a1, a2, ..., an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai, ..., aj.

Input. Consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 105). The next line contains n integers a1, ..., an (-105 ≤ ai ≤ 105). You can assume that for each i ({1, ..., n – 1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the query.

The last test case is followed by a line containing a single 0.

Output. For each query, print one line with one integer: the number of occurrences of the most frequent value within the given range.

	Sample input
	Sample output

	10 3

-1 -1 1 1 1 1 3 10 10 10

2 3

1 10

5 10

0
	1

4

3

SOLUTION
segment tree
Algorithm analysis
Note that the input sequence ai is already sorted. Identical elements in it always stand side by side. Let Ti, j be the number of occurrences of the most frequently occurring number in the interval [i, j]. If ai = aj, then Ti, j = j – i + 1. Divide the interval [i, j] into two intervals: [i, k] and [k + 1, j].
· If ak ≠ ak+1, then Ti, j = max(Ti, k, Tk+1, j);

· If ak = ak+1, then Ti, j = max(Ti, k, Tk+1, j, number of occurrences of ak in [i, k] + number of occurrences ak+1 in [k + 1, j]);

Given a sequence a, construct a sequence b of the same length as follows. Let the sequence a contain number x at positions from l to r (and only at these positions). Then, at positions from l to r in the sequence b, we put the numbers r – l + 1. We construct a segment tree from the sequence b, which maintains a maximum on the segment.
Consider a query (Left, Right), that returns the number of occurrences of the most frequently occurring number in the interval [Left, Right].
1. If aLeft = aRight, then TLeft,Right = Right – Left + 1.
2. Otherwise, using binary search, find the maximum LeftEnd index for which aLeftEnd = aLeft. And also find the minimum RightBegin index for which aRightBegin = aRight. It remains to count how many times occur in the interval [Left, Right] numbers aLeft and aRight. And also recursively solve the problem for the interval [LeftEnd + 1, RightBegin – 1]. Among the three obtained values, it remains to find the largest. That is
TLeft, Right = max(TLeft, LeftEnd, TRightBegin, Right, TLeftEnd + 1, RightBegin – 1)
Time complexity
Construct a sequence b: O(n);

Construct a segment tree by sequence b: O(n);
Time complexity of one query: O(log2n);

The overall running time of the algorithm: O(n + q log2n).
Memory complexity: O(n)
Example
For the sequence a given in the example, the sequence b will take the form:
2 2 4 4 4 4 1 3 3 3

Consider the query on the interval [Left, Right] = [5, 10].

[image: image1.emf]T

5,10

-1 -1 1 1 1 1 3 10 10 10 A

2 2 4 4 4 4 1 3 3 3 B

index 1 2 3 4 5 6 7 8 9 10

LeftEnd = 6, all elements ai with indices from 5 to 6 are equal to 1. There are 2 such elements.
RightBegin = 8, all elements ai with indices from 8 to 10 are equal to 10. There are 3 such elements.
Run a query recursively on the interval [LeftEnd + 1, RightBegin – 1] = [7, 7]. The result of the query will be the value 1.
Thus, the answer to the query (5, 10) will be the biggest among three values 2, 3 and 1.
Algorithm realization

The segment tree is stored in the SegmentTree array of length 4*MAX, where MAX is the maximum number of elements that can be stored in the segment. The tree will maintain a maximum on the segment. We also declare arrays a and b that will store the corresponding sequences.
#define MAX 100010

int SegmentTree[4*MAX];

int a[MAX], b[MAX];
The function BuildTree builds a segment tree from the array a. It is passed the number of the current vertex Vertex of a segment tree and the boundaries of the segment LeftPos and RightPos that correspond to the vertex Vertex.
void BuildTree(int *a, int Vertex, int LeftPos, int RightPos)

{

 if (LeftPos == RightPos) SegmentTree[Vertex] = a[LeftPos];

 else

 {

 int Middle = (LeftPos + RightPos) / 2;

 BuildTree(a, 2*Vertex, LeftPos, Middle);

 BuildTree(a, 2*Vertex+1, Middle+1, RightPos);

 SegmentTree[Vertex] =

 max(SegmentTree[2*Vertex],SegmentTree[2*Vertex+1]);

 }

}

The function GetMax returns the maximum on a segment [Left; Right]. The vertex Vertex corresponds a segment [LeftPos; RightPos].
int GetMax(int Vertex, int LeftPos, int RightPos, int Left, int Right)

{

 if (Left > Right) return -INF;

 if ((Left == LeftPos) && (Right == RightPos))
 return SegmentTree[Vertex];

 int Middle = (LeftPos + RightPos) / 2;

 return max(GetMax(2*Vertex, LeftPos, Middle, Left,
 min(Right,Middle)),

 GetMax(2*Vertex+1, Middle+1, RightPos,
 max(Left,Middle+1),Right));

}

The main part of the program. Read the input sequence ai into the array a.
while(scanf("%d %d",&n,&q), n)

{

 for(i = 0; i < n; i++) scanf("%d",&a[i]);

Build array b from array a. In the variable cnt count the number of consecutive identical elements.
 for(bPtr = i = 0; i < n; i++)

 {

 cnt = 1;

 while((i < n) && (a[i] == a[i+1])) cnt++, i++;

 for(j = 0; j < cnt; j++) b[bPtr++] = cnt;

 }

From the elements of the sequence b build a segment tree that maintains a maximum.
 memset(SegmentTree,0,sizeof(SegmentTree));

 BuildTree(b,1,0,n-1);

Read a query (Left, Right). Shift the query boundaries by one to the left, since the indexing of arrays a and b starts from zero.
 for(i = 0; i < q; i++)

 {

 scanf("%d %d",&Left,&Right);

 Left--; Right--;

If a[Left] = a[Right], then all elements on the segment [Left, Right] are identical. Return the length of this segment.

 if (a[Left] == a[Right]) printf("%d\n",Right - Left + 1);

 else

 {

Using binary search, find the maximum index LeftEnd, for which aLeftEnd = aLeft.

 int LeftEnd = (int)(upper_bound(a+Left,a+Right,a[Left]) - a) - 1;
Using binary search, find the minimum index RightBegin, for which aRightBegin = aRight.

 int RightBegin = (int)(lower_bound(a+Left,a+Right,a[Right]) - a);
On the segment [Left, Right] number aLeft appears LeftCnt times.

 int LeftCnt = LeftEnd - Left + 1;

On the segment [Left, Right] number aRight appears RightCnt times.

 int RightCnt = Right - RightBegin + 1;

Solve recursively the problem for the interval [LeftEnd + 1, RightBegin – 1].

 int Middle = GetMax(1,0,n-1,LeftEnd + 1, RightBegin - 1);

Among the three obtained values LeftCnt, RightCnt и Middle find the largest and print the answer.

 int res = max(max(LeftCnt,RightCnt),Middle);

 printf("%d\n",res);

 }

 }

}

_1753783455.vsd
-1

-1

1

1

1

1

3

10

10

10

A

2

2

4

4

4

4

1

3

3

3

B

index

1

2

3

4

5

6

7

8

9

10

T5,10

