4008. Binomial coefficients
Gunnar is quite an elderly and forgetful researcher. Currently, he is writing a paper on security in social networks that involves some combinatorics. He developed a program to calculate binomial coefficients to assist him in verifying some of his calculations.
The binomial coefficient
[image: image1.wmf]k

n

C

 is a number defined by

[image: image2.wmf](

)

!

!

!

k

n

k

n

C

k

n

-

=

where n and k are non-negative integers.
Gunnar uses his program to calculate
[image: image3.wmf]k

n

C

 and obtains a number m as a result. Unfortunately, being forgetful, he forgot the numbers of n and k he used as input. These two numbers were the result of lengthy computations and were written on one of the many sheets scattered across his desk. Instead of searching through the papers, he decided to reconstruct the numbers n and k from the obtained answer. Can you help him find all possible values?

Input. The first line contains the number of test cases, at most 100. Each test is given in a single line and contains an integer m (2 ≤ m ≤ 1015) – the result of the Gunnar’s program.

Output. For each test, print two lines. The first line should contain the number of ways to express m using the binomial coefficient. The second line should contain all pairs (n, k) such that
[image: image4.wmf]k

n

C

 = m. Pairs should be sorted in increasing order of n, and in case of equality, in increasing order of k. The output format of pairs is given in the example.

	Sample input
	Sample output

	2

2

15
	1

(2,1)

4

(6,2) (6,4) (15,1) (15,14)

SOLUTION
combinatorics – binomial coefficient – binary search
Algorithm analysis
If
[image: image5.wmf]k

n

C

 = m, then
[image: image6.wmf]k

n

n

C

-

 = m. It is sufficient to find the solution for k ≤ n / 2 and, along with the pair (k, n), also print the pair (k, n – k). For k = n / 2 these two pairs coincide.
Let p be the smallest number for which
[image: image7.wmf]p

p

C

2

 > m. Then it is obvious that 0 ≤ k < p.
Choose k such that
[image: image8.wmf]k

k

C

2

 ≤ m and consider the function f(n) =
[image: image9.wmf]k

n

C

. Then for 2k ≤ n ≤ m, the function f(n) is monotonically increasing. Therefore, you can solve the equation f(n) = m by binary search.
To solve the problem, one should iterate over the values of k (0 ≤ k < p), and for each such k, solve the equation
[image: image10.wmf]k

n

C

 = m relatively n with binary search. The found value of n must be an integer.
Example
Consider the equation
[image: image11.wmf]k

n

C

 = 3003. Given that
[image: image12.wmf]6

12

C

 = 924 and
[image: image13.wmf]7

14

C

 = 3432, it is sufficient to iterate over 0 ≤ k ≤ 6.
Let k = 2, consider the equation
[image: image14.wmf]2

n

C

 = 3003 or
[image: image15.wmf]3003

2

)

1

(

=

-

n

n

, n * (n – 1) = 6006. By binary search in the interval 4 ≤ n ≤ 3003, we find an integer solution n = 78. Since n ≠ 2*k, we have two solutions:
[image: image16.wmf]2

78

C

 =
[image: image17.wmf]76

78

C

 = 3003.
Algorithm realization
Store the required pairs in the vector of pairs res.
vector<pair<long long,long long> > res;
The Cnk function computes the value of binomial coefficient
[image: image18.wmf]k

n

C

.
long long Cnk(long long n, long long k)

{

 long long i, Res = 1;

 if (k > n - k) k = n - k;

 for(i = 1; i <= k; i++)

 {

If at the next iteration the result exceeds m (we are searching for a solution to the equation
[image: image19.wmf]k

n

C

 = m), then stop computations. Exiting the function at this point avoids overflow.
 if (1.0 * Res * (n - i + 1) / i > m) return m + 1;

 Res = Res * (n - i + 1) / i;

 }

 return Res;

}

The main part of the program. Read the input data.
scanf("%d",&tests);

while (tests--)

{

 res.clear();

 scanf("%lld",&m);

Iterate over the values of k from 0 until
[image: image20.wmf]k

k

C

2

 ≤ m.
 for(k = 0; Cnk(2*k,k) <= m; k++)

 {

Find the value of n (2k ≤ n ≤ m) using binary search.

 long long lo = 2*k, hi = m;

 while (lo < hi)

 {

 long long n = (lo + hi) / 2;

 if (Cnk(n,k) < m) lo = n + 1; else hi = n;

 }

If
[image: image21.wmf]k

lo

C

 = m, then a solution is found. Include one or two pairs of solutions in the result.
 if (Cnk(lo,k) == m)

 {

 res.push_back(make_pair(lo,k));

 if (lo != 2*k)

 res.push_back(make_pair(lo,lo - k));

 }

 }

Sort the pairs.

 sort(res.begin(),res.end());

Print the answer – the number of found pairs and the pairs themselves.
 printf("%d\n",res.size());

 for(i = 0; i < res.size(); i++)

 printf("(%lld,%lld) ", res[i].first,res[i].second);

 printf("\n");

}

Python realization
The Cnk function computes the value of binomial coefficient
[image: image22.wmf]k

n

C

.

def Cnk(n, k):
 Res = 1
 if k > n - k:
 k = n – k
 for i in range(1, k + 1):
If at the next iteration the result exceeds m (we are searching for a solution to the equation
[image: image23.wmf]k

n

C

 = m), then stop computations. Exiting the function at this point avoids overflow.
 if Res * (n - i + 1) // i > m:
 return m + 1
 Res = Res * (n - i + 1) // i
 return Res
The main part of the program. Read the input data.
tests = int(input())
for _ in range(tests):
 res = []
 m = int(input())
Iterate over the values of k from 0 until
[image: image24.wmf]k

k

C

2

 ≤ m.

 k = 0
 while Cnk(2 * k, k) <= m:
Find the value of n (2k ≤ n ≤ m) using binary search.

 lo, hi = 2 * k, m
 while lo < hi:
 n = (lo + hi) // 2
 if Cnk(n, k) < m:
 lo = n + 1
 else:
 hi = n
If
[image: image25.wmf]k

lo

C

 = m, then a solution is found. Include one or two pairs of solutions in the result.
 if Cnk(lo, k) == m:
 res.append((lo, k))
 if lo != 2 * k:
 res.append((lo, lo - k))
 k += 1
Sort the pairs.

 res.sort()
Print the answer – the number of found pairs and the pairs themselves.
 print(len(res))
 for item in res:
 print(f"({item[0]},{item[1]})", end=" ")
 print()

_1777316644.unknown

_1777316659.unknown

_1777316672.unknown

_1777316697.unknown

_1777316818.unknown

_1777316684.unknown

_1777316689.unknown

_1777316680.unknown

_1777316666.unknown

_1777316669.unknown

_1777316663.unknown

_1777316653.unknown

_1777316656.unknown

_1777316647.unknown

_1777315958.unknown

_1777315964.unknown

_1777316640.unknown

_1581536274.unknown

_1581536275.unknown

_1577184173.unknown

_1581536273.unknown

