4051. Grasshopper
Grasshopper lives in the teacher's room. It likes to jump on one dimensional checkerboard. The length of the board is n cells. To its regret, it can jump only on 1, 2, ..., k cells forward.

Once teachers wondered in how many ways a grasshopper can reach the last cell from the first one. Help them to answer this question.
Input. Two integers n and k (1 ≤ n ≤ 30, 1 ≤ k ≤ 10).
Output. Print the number of ways for grasshopper to leap from the first cell to the last.
	Sample input
	Sample output

	8 2
	21

SOLUTION
dynamic programming
Algorithm analysis
Let dp[i] equals to the number of ways for grasshopper to leap from the first cell to the i-th one. Set dp[1] = 1, dp[2] = 1.
If 2 < i ≤ k, then its possible to get into the i-th cell from any previous one, so
dp[i] = dp[1] + dp[2] + … + dp[i – 1] =
[image: image1.wmf]å

-

=

1

1

]

[

i

j

j

dp

Let k be large, calculate dp[i] using this formula:
dp[3] = dp[1] + dp[2] = 1 + 1 = 2,

dp[4] = dp[1] + dp[2] + dp[3] = 1 + 1 + 2 = 4,

dp[5] = dp[1] + dp[2] + dp[3] + dp[4] = 1 + 1 + 2 + 4 = 8

You can notice that dp[i] = 2* dp[i – 1]. However, this formula can be obtained from the following considerations. From
dp[i – 1] = dp[1] + dp[2] + … + dp[i – 2]
follows that
dp[i] = (dp[1] + dp[2] + … + dp[i – 2]) + dp[i – 1] =

dp[i – 1] + dp[i – 1] = 2 * dp[i – 1]
If i > k, then its possible to get into the i-th cell from any out of k previous, so
dp[i] =
[image: image2.wmf]å

-

-

=

1

]

[

i

k

i

j

j

dp

 = dp[i – k] + … + dp[i – 1]
Similarly, you can see that from the fact that
dp[i – 1] = dp[i – k – 1] + … + dp[i – 2]
follows that
dp[i] = dp[i – k] + … + dp[i – 1] =

(dp[i – k – 1] + dp[i – k] + … + dp[i – 2]) – dp[i – k – 1] + dp[i – 1] =
2 * dp[i – 1] – dp[i – k – 1]

[image: image3.emf]i-k-1 i -k ... i -2 i -1 i

dp

dp[i]

dp[i-1]

Sample
For the given sample test n = 8 and k = 2 the state of dp array has the from:

[image: image4.emf]1 1

1 2

2 3

3 4

5 8

5 6

13 21

7 8

dp[i]

i

For n = 8 and k = 4 the array dp has the form:

[image: image5.emf]1 1

1 2

2 4

3 4

8 15

5 6

29 56

7 8

k = 4, s = 8

s = s –1 + 8 = 15

s = s –1 + 15 = 29

s = s –2 + 29 = 56

dp[i]

i

Exercise
Fill dp array for n = 8 and k = 3.

[image: image6.emf]1 2 3 4 5 6 7 8

dp[i]

i

Algorithm realization

Declare the array.
#define MAX 35

int dp[MAX];

Read the input data. Initialize dp[1] = dp[2] = 1.
scanf("%d %d",&n,&k);

dp[1] = 1; dp[2] = 1;

Fill cells of array dp[i] for 2 < i ≤ k.

for(i = 3; i <= k; i++)

 dp[i] = 2 * dp[i-1];

Fill cells of array dp[i] for i > k.

for(; i <= n; i++)

 dp[i] = 2 * dp[i-1] - dp[i-k-1];

Print the answer.

printf("%d\n",dp[n]);

Java realization

import java.util.*;
class Main
{
 static int dp[] = new int[35];
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 int n = con.nextInt();
 int k = con.nextInt();
 int i;
 dp[1] = 1; dp[2] = 1;
 for(i = 3; i <= k; i++)
 dp[i] = 2 * dp[i-1];
 for(; i <= n; i++)
 dp[i] = 2 * dp[i-1] - dp[i-k-1];
 System.out.println(dp[n]);
 con.close();
 }
}
_1600329741.unknown

_1662742452.vsd
1

1

1

2

2

3

3

4

5

8

5

6

13

21

7

8

dp[i]

i

_1675176274.vsd
dp[i-1]

dp[i]

i-k-1

i - k

...

i - 2

i - 1

i

dp

_1662742423.vsd
1

1

1

2

2

4

3

4

8

15

5

6

29

56

7

8

 k = 4, s = 8

s = s – 1 + 8 = 15

s = s – 1 + 15 = 29

s = s – 2 + 29 = 56

dp[i]

i

_1662742388.vsd
1

2

3

4

5

6

7

8

dp[i]

i

_1600329740.unknown

