4104. Distance in tree
A connected graph without cycles is called a tree.
The distance between two vertices of a tree is defined as the length (in edges) of the shortest path between these vertices.

Given a tree with n vertices and a positive integer k. Compute the number of distinct pairs of vertices of the tree whose distance is equal to k. Note that pairs (v, u) and (u, v) are considered the same pair.

Input. The first line contains two integers n and k (1 ≤ n ≤ 50000, 1 ≤ k ≤ 500) – the number of vertices in the tree and the required distance between vertices.

The next n – 1 lines contain the edges of the tree in the format ai bi (1 ≤ ai, bi ≤ n, ai ≠ bi), where ai and bi are the vertices of the tree connected by the i-th edge. All specified edges are different.

Output. Print a single integer – the number of distinct pairs of tree vertices whose distance is equal to k.
	Sample input
	Sample output

	5 2

1 2

2 3

3 4

2 5
	4

SOLUTION
dynamic programming - tree
Algorithm analysis
Let dp[v][x] be the number of vertices at distance x from vertex v in the subtree rooted at v. Set dp[v][0] = 1, considering that there is only one vertex v at the distance 0 from itself. Let vertex v have sons u1, u2, .., up. Then
dp[v][x] =
[image: image1.wmf]å

=

-

p

i

i

x

u

dp

1

]

1

][

[

The number of vertices at distance x from vertex v (in the subtree rooted at v) is equal to the number of vertices at distance x – 1 from the children of vertex v.
Let’s consider the subtree rooted at v. We’ll count how many paths of length k exist within it that pass through vertex v. Divide them into two groups:
· paths that start at v. Their number is dp[v][k].
· paths that pass through v and have their endpoints in the subtrees of the children of v.

Consider a path of length k passing through the root of subtree v. Let the distance from v to one of its ends be x, where 1 ≤ x ≤ k – 1 (for example, this end is located in the subtree with root u1). Then the distance from v to the other end is k – x (the second end may be located in any other subtree different from the subtree rooted at u1).

[image: image2.emf]v

u

1

u

p

. . .u

2

dp[v][k]

dp[u

1

][x-1]

dp[v][k-x] -dp[u

1

][k-x-1]

x

k -x

If the distance from the first end of the path to v is x, then the distance from it to u1 is x – 1. The number of ways to choose this end is dp[u1][x – 1]. The number of ways to choose the second end of the path is equal to the number of vertices located at distance k – x from v, but not lying in the subtree rooted at u1. Their number is dp[v][k – x] – dp[u1][k – x – 1]. According to the multiplication rule, the number of such paths is dp[u1][x – 1] * (dp[v][k – x] – dp[u1][k – x – 1]).
Thus, their number is
dp[v][k] +
[image: image3.wmf](

)

å

å

-

=

=

-

-

-

-

×

-

1

1

1

]

1

][

[

]

][

[

]

1

][

[

2

1

k

x

i

i

p

i

x

k

u

dp

x

k

v

dp

x

u

dp

We just need to sum up the given expression over all vertices.
Example
Let’s consider the tree provided in the example.

[image: image4.emf]123

5

4

dp[1][0] = 1

dp[1][1] = 1

dp[1][2] = 2

dp[2][0]

dp[2][1]

dp[2][0] = 1

dp[2][1] = 2

dp[2][2] = 1

dp[3][0] + dp[5][0]

dp[3][1] + dp[5][1]

dp[5][0] = 1

dp[5][1] = 0

dp[5][2] = 0

dp[3][0] = 1

dp[3][1] = 1

dp[3][2] = 0

dp[4][0]

dp[4][1]

dp[4][0] = 1

dp[4][1] = 0

dp[4][2] = 0

Algorithm realization
The array g contains the tree. The dp array is used for dynamic programming.
vector<vector<int> > g;

vector<vector<int> > dp;

The dfs function implements depth-first search from vertex v. The value p is the parent of v. Construct the array dp.
void dfs(int v, int p = -1)

{
Initialize the array dp[v].

 dp[v].resize(k+1);

 dp[v][0] = 1;

 for(int i = 0; i < g[v].size(); i++)

 {
Iterate over all vertices to, that can be reached from v.
 int to = g[v][i];

 if (to == p) continue;

 dfs(to,v);

 for(int x = 1; x <= k; x++)

 dp[v][x] += dp[to][x-1];

 }

}

The dfsRes function implements depth-first search from vertex v with computing the answer.
void dfsRes(int v, int p = -1)

{

 for(int i = 0; i < g[v].size(); i++)

 {

 int to = g[v][i];

 if (to == p) continue;

 dfsRes(to,v);

 for(int x = 1; x < k; x++)

 resA += 1LL * dp[to][x-1] * (dp[v][k-x] - dp[to][k-x-1]);

 }

 resB += dp[v][k];

}

The main part of the program. Read the input data. Construct a tree.
scanf("%d %d",&n,&k);

g.resize(n+1);

for(i = 0; i < n - 1; i++)

{

 scanf("%d %d",&a,&b);

 g[a].push_back(b);

 g[b].push_back(a);

}

With the first depth-first search we construct the array dp.
dp.resize(n+1);

dfs(1);

Compute and print the answer.
resA = resB = 0;

dfsRes(1);

res = resA / 2 + resB;

printf("%lld\n",res);

_1541952087.unknown

_1542042870.vsd
v

u1

up

. . .

u2

dp[v][k]

dp[u1][x-1]

dp[v][k-x] - dp[u1][k-x-1]

_1686374506.vsd
1

2

3

5

4

dp[1][0] = 1

dp[1][1] = 1

dp[1][2] = 2

dp[2][0]

dp[2][1]

dp[2][0] = 1

dp[2][1] = 2

dp[2][2] = 1

dp[3][0] + dp[5][0]

dp[3][1] + dp[5][1]

dp[5][0] = 1

dp[5][1] = 0

dp[5][2] = 0

dp[3][0] = 1

dp[3][1] = 1

dp[3][2] = 0

dp[4][0]

dp[4][1]

dp[4][0] = 1

dp[4][1] = 0

dp[4][2] = 0

_1541945898.unknown

