4106. Subsets generation
Given a set s of size n, containing all elements from the interval [1 .. n], generate all of its subsets.

Input. One positive integer n (1 ≤ n ≤ 8).

Output. Each subset of the set {1, …, n} should be printed on a separate line. The subset should be printed as a list of its elements in ascending order. The elements of the subset must be written without spaces, i.e., as a concatenated string. Each subset should appear no more than once. The subsets should be listed in ascending order. The empty subset should not be printed.

	Sample input
	Sample output

	3
	1

2

3

12

13

23

123

SOLUTION
combinatorics
Algorithm analysis
The task is to generate all subsets of a given set. To do this, iterate through all numbers from 1 to 2n – 1. Represent the number i in binary and consider its last n bits (which may include leading zeros). Each such binary representation corresponds to a subset: if the k-th bit is set to 1, then the number k (1 ≤ k ≤ n) is included in the subset. For example:
· if n = 3 and i = 2, the binary representation of i = 0102 corresponds to the subset {2}.
· if n = 4 and i = 11, the binary representation of i = 10112 corresponds to the subset {1, 2, 4}.
Example
Let’s consider the generation of subsets for n = 3.

[image: image1.emf]0000{ }

1001{ 1 }

2010{ 2 }

321

3011{ 2, 1 }

4100{ 3 }

321

5101{ 3, 1 }

6110{ 3, 2 }

7111{ 3, 2, 1 }

Algorithm implementation
We’ll generate subsets as numbers stored in the array v. For example, the subset {1, 2, 3} will be represented as the number 123.
#define MAX 8

int v[1 << MAX];

Read the input value n.
scanf("%d",&n);
In a loop, iterate through all possible masks for subsets of a set with n elements. The operation 1 << n shifts the number 1 to the left by n positions, which is equivalent to raising 2 to the power of n. Generate all 2n – 1 subsets (excluding the empty one).
for (i = 1; i < (1 << n); i++)

{
Store the elements of the current subset in the variable x as a string. For example, the subset {1, 2, 4} will be stored as x = 124.
 x = 0;
 for (j = 0; j < n; j++)

 if (i & (1 << j)) x = x * 10 + j + 1;

 v[i] = x;

}

Sort the subsets in ascending order based on their corresponding numbers.
sort(v, v + (1 << n));

Print the subsets in the required order.
for (i = 1; i < 1 << n; i++)

 printf("%d\n",v[i]);

Java implementation
import java.util.*;
public class Main
{
 public static void main(String []args)
 {
 Scanner con = new Scanner(System.in);
 int n = con.nextInt();
 int v[] = new int[1<<n];
 for(int i = 1; i < (1 << n); i++)
 {
 int val, j;

 for(val = j = 0; j < n; j++)
 if ((i & (1 << j)) > 0) val = val * 10 + j + 1;
 v[i] = val;
 }
 Arrays.sort(v);
 for(int i = 1; i < 1 << n; i++)
 System.out.println(v[i]);
 con.close();
 }
}
_1664040700.vsd
0

0

0

0

{ }

1

0

0

1

{ 1 }

2

0

1

0

{ 2 }

3

2

1

3

0

1

1

{ 2, 1 }

4

1

0

0

{ 3 }

3

2

1

5

1

0

1

{ 3, 1 }

6

1

1

0

{ 3, 2 }

7

1

1

1

{ 3, 2, 1 }

