4369. Arson
There is a common web in front of you. However, as an experienced contester, you noticed that it is a connected graph with n vertices and m edges. If you fire some vertex, it will light up, after a second all adjacent vertices light up, then all adjacent ones with already burning will light up, etc.

You know which vertices will be fired in the web (all at the same time). Find how many seconds will pass until the last vertex lights up and find this vertex.
Input. The first line contains integers n (1 ≤ n ≤ 105) and m (n – 1 ≤ m ≤ 105). Each of the next m lines contains two numbers – the vertex numbers connected with an edge. The vertices are numbered starting from 1.

The next line contains number k (1 ≤ k ≤ n) – the number of points to fire. Next line contains the numbers of k vertices to be fired.
Output. In the first line print the time when the last vertex will light up. In the second line print the number of this vertex. If there are several of them, print the one with minimum number.
	Sample input
	Sample output

	6 6

1 2

2 6

1 5

5 6

3 5

4 5

2

1 2
	2

3

SOLUTION
graphs - bfs
Algorithm analysis
Breadth First Search from multiple sources. Push all the fire points to the queue and start Breadth First Search.
Example
Graph shown in the sample has the form:

[image: image1.emf]1 2

3

4 5

6

starting

points

dist[1]=0 dist[2]=0

dist[6]=1

dist[5]=1 dist[4]=2

dist[3]=2

Algorithm realization
Declare arrays for breadth first search.

vector<int> dist;

vector<vector<int> > g;

queue<int> q;

All sources are already in queue q. Start the breadth first search.
void bfs(void)

{

 while (!q.empty())

 {

 int v = q.front(); q.pop();

 for (int to : g[v])

 if (dist[to] == -1)

 {

 q.push(to);

 dist[to] = dist[v] + 1;

 }

 }

}

The main part of the program. Read the input data. Construct the graph.
scanf("%d %d",&n,&m);

g.resize(n+1);

for(i = 0; i < m; i++)

{

 scanf("%d %d",&u,&v);

 g[u].push_back(v);

 g[v].push_back(u);

}

The dist[i] value contains the time after which the vertex i will light up. Initially we set dist[i] = -1.
dist = vector<int>(n+1,-1);

Read the sources of arson. For each vertex id of arson, set dist[id] = 0 and push vertex id to the queue.
scanf("%d",&k);

for(i = 0; i < k; i++)

{

 scanf("%d",&id);

 dist[id] = 0;

 q.push(id);

}

Run breadth first search.

bfs();

We are looking for the vertex id, that will light up the last. The mx variable contains the time after which the id vertex will light up.
mx = -1;

for(i = 1; i <= n; i++)

 if (dist[i] > mx)

 {

 mx = dist[i];

 id = i;

 }

Print the time dist[id], after which the last vertex id will light up. Next, print the id number of this vertex.
printf("%d\n",dist[id]);

printf("%d\n",id);

Java realization
import java.util.*;
public class Main
{
 static ArrayList<Integer>[] g;
 static Queue<Integer> q = new LinkedList<Integer>();
 static int dist[];
 static int n, m;
 static void bfs()
 {
 while(!q.isEmpty())
 {
 int v = q.poll();
 for(int i = 0; i < g[v].size(); i++)
 {
 int to = g[v].get(i);
 if (dist[to] == -1)
 {
 q.add(to);
 dist[to] = dist[v] + 1;
 }
 }
 }
 }
 @SuppressWarnings("unchecked")
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 n = con.nextInt(); m = con.nextInt();
 g = new ArrayList[n+1];
 for(int i = 0; i <= n; i++)
 g[i] = new ArrayList<Integer>();
 dist = new int[n+1];
 for (int i = 0; i < m; i++)
 {
 int u = con.nextInt();
 int v = con.nextInt();
 g[u].add(v);
 g[v].add(u);
 }
 Arrays.fill(dist,-1);
 int k = con.nextInt();
 for (int i = 0; i < k; i++)
 {
 int id = con.nextInt();
 dist[id] = 0;
 q.add(id);
 }
 bfs();
 int max = -1, id = -1;
 for(int i = 1; i <= n; i++)
 if (dist[i] > max)
 {
 max = dist[i];
 id = i;
 }
 System.out.println(dist[id]);
 System.out.println(id);
 con.close();
 }
}
_1650716994.vsd
1

2

3

4

5

6

starting
points

dist[1]=0

dist[2]=0

dist[6]=1

dist[5]=1

dist[4]=2

dist[3]=2

