4416. Testing System
Junior programmer Sasha wrote his first testing system. He was so happy to compile it that he decided to invite school friends to his own contest.

But at the end of the contest, it became clear that the system couldn’t sort the teams in the results table. Help Sasha implement this sort.

The teams are ordered according to ACM rules:

· by the number of solved tasks in descending order;

· if the number of solved problems is equal, sort by the penalty time in ascending order;

· if all the previous parameters are equal, sort by the team number in ascending order.
Input. The first line contains the number of teams n (1 ≤ n ≤ 100000) that take part in the contest. The i-th of the next n lines contains the number of solved problems s (0 ≤ s ≤ 100) and the penalty time t (0 ≤ t ≤ 100000) for the team with number i.
Output. Print n numbers – the team numbers in the sorted order.
	Sample input
	Sample output

	5

3 50

5 720

1 7

0 0

8 500
	5 2 1 3 4

SOLUTION
sort
Algorithm analysis
We will store the team in a structure:
· team number;

· penalty time;

· the number of solved problems;
It is necessary to write a comparator – a function for comparing two teams of participants. Then sort the teams.

Algorithm realization
Declare the structure of the team – participant in the ACM contest: team number, penalty time, and number of solved problems.
struct person

{

 int id, penalty_time, problems;

} *acm;

Function cmp is a comparator for sorting the participants in a competition.

int cmp(person a, person b)

{
Sort by the number of solved tasks in descending order.

 if (a.problems != b.problems) return a.problems > b.problems;

If the number of solved problems is equal, sort by the penalty time in ascending order.

 if (a.penalty_time != b.penalty_time)

 return a.penalty_time < b.penalty_time;
If all the previous parameters are equal, sort by the team number in ascending order.

 return a.id < b.id;

}

The main part of the program. Allocate memory for an array of teams.
scanf("%d",&n);

acm = new person[n];

Read the information about the teams.

for(i = 0; i < n; i++)

{

 scanf("%d %d",&acm[i].problems,&acm[i].penalty_time);

 acm[i].id = i + 1;

}

Sort the teams according to the given condition.

sort(acm,acm+n,cmp);

Print the team’s IDs in the order of their locations in the resulting table.

for(i = 0; i < n; i++)

 printf("%d ",acm[i].id);

printf("\n");
delete[] acm;

Algorithm realization – build-in comparator
#include <cstdio>

#include <algorithm>

using namespace std;

int n, i, ptr;

struct person

{

 int id, penalty_time, problems;

 int operator< (const person &a) const

 {

 if (problems != a.problems) return problems > a.problems;

 if (penalty_time != a.penalty_time)
 return penalty_time < a.penalty_time;

 return id < a.id;

 }

} *acm;

int main(void)

{

 scanf("%d",&n);

 acm = new person[n];

 for(i = 0; i < n; i++)

 {

 scanf("%d %d",&acm[i].problems,&acm[i].penalty_time);

 acm[i].id = i + 1;

 }

 sort(acm,acm+n);

 for(i = 0; i < n; i++)

 printf("%d ",acm[i].id);

 printf("\n");

 delete[] acm;

 return 0;

}

Java realization
import java.util.*;
class Person
{
 int problems;
 int penalty_time;
 int id;
 public Person(int problems, int penalty_time, int id)
 {
 this.problems = problems;
 this.penalty_time = penalty_time;
 this.id = id;
 }
}
public class Main
{
 public static class MyFun implements Comparator<Person>
 {
 public int compare(Person a, Person b)
 {
 if (a.problems == b.problems && a.penalty_time == b.penalty_time) return a.id - b.id;
 if (a.problems == b.problems) return a.penalty_time - b.penalty_time;
 return b.problems - a.problems;
 }
 }
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 int n = con.nextInt();
 Person[] p = new Person[n];
 for (int i = 0; i < n; i++)
 p[i] = new Person(con.nextInt(), con.nextInt(), i+1);
 Arrays.sort(p, new MyFun());
 for (int i = 0; i < n; i++)
 System.out.print(p[i].id + " ");
 con.close();
 }
}
