4420. The root of a cubic equation
Given a cubic equation ax3 + bx2 + cx + d = 0 (a ≠ 0). It is known that this equation has exactly one root. Find it.
Input. Four integers: a, b, c, d (-1000 ≤ a, b, c, d ≤ 1000).
Output. Print the root of equation with no less than 6 decimal digits.
	Sample input
	Sample output

	-1 -6 -12 -7
	-1.0000000111

SOLUTION
binary search
Algorithm analysis
Localize the root of equalization f(x) = 0. To do this, find r such that f(-r) * f(r) < 0. For example, having initialized r = 1, we will double r at each step until holds an inequality f(-r) * f(r) < 0. Thus, we will iterate over intervals [-1; 1], [-2; 2], [-4; 4], [-8; 8], …. until we find the interval where the root of the equation is located.
Set l = -r. Further on the interval [l; r] using a binary search (dividing a segment in half), we look for a root.
Algorithm realization
Declare the constant epsilon.
.
#define EPS 1e-12

Function f computes the value of a cubic polynomial.
double f(double x)

{

 return a*x*x*x + b*x*x + c*x + d;

}

The main part of the program. Read the input data.
scanf("%lf %lf %lf %lf",&a,&b,&c,&d);

Find the boundaries [l; r] containing the desired root. Initially set r = 1. Sequentially increase r twice until the desired root will belong to the interval [-r; r] (for this it is necessary that the function f(x) will take the opposite sign values at the ends of the interval). Then set l = -r.
r = 1;

while(f(r) * f(-r) >= 0) r *= 2;

l = -r;

Using binary search, we search for the root of equation f(x) = 0 on the interval [l; r].
while (r - l > EPS)

{

 x = (l + r) / 2;

 if (f(x) * f(r) > 0) r = x; else l = x;

}

Print the answer.

printf("%.8lf\n",l);

Java realization
import java.util.*;
public class Main
{
 static double a, b, c, d;
 static double f(double x)
 {
 return a*x*x*x + b*x*x + c*x + d;
 }
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 a = con.nextDouble();
 b = con.nextDouble();
 c = con.nextDouble();
 d = con.nextDouble();
 double right = 1;
 while(f(right) * f(-right) >= 0) right *= 2;
 double left = -right;
 while (right - left > 1e-6)
 {
 double middle = (left + right) / 2;
 if (f(middle) * f(right) > 0) right = middle;
 else left = middle;
 }
 System.out.println(left);
 con.close();
 }
}
