4421. For fans of statistics
Have you ever wondered how many people trams transport annually in a city with a population of ten million, where every third resident uses the tram twice a day?

Suppose there are n cities on planet Earth that have tram systems. Statistics enthusiasts have calculated, for each of these cities, how many people were transported by trams over the past year. Based on this data, a table was created in which the cities were initially sorted alphabetically. Later, it turned out that the city names were not relevant for the statistical analysis, so they were simply replaced with numbers from 1 to n.

The search system that works with this data needs to quickly answer the following type of query: is there a city among those numbered from l to r where exactly x people were transported by trams over the year?

You are to implement this query module.

Input. The first line contains a single integer n (0 < n < 70000) – the number of cities.

The second line contains n positive integers – the statistical data, where the i-th number indicates the number of people transported by trams in the i-th city over the past year. All values are positive integers and do not exceed 109 – 1.

The third line contains a single integer q (0 < q < 70000) – the number of queries.

Each of the next q lines contains a query described by three integers l, r and x (1 ≤ l ≤ r ≤ n; 0 < x < 109).

Output. Print a string of q characters. The i-th character should be ‘1’ if there exists at least one city numbered from l to r where exactly x people were transported by trams; otherwise, print ‘0’.

	Sample input
	Sample output

	5

123 666 314 666 434

5

1 5 314

1 5 578

2 4 666

4 4 713

1 1 123
	10101

SOLUTION
binary search
Algorithm analysis
Let the array v contain statistical data about the number of people transported by trams. For each number of transported people x, store a vector of indices where this value occurs. In other words, in the map representation p[x], we keep the indices of the cities where exactly x people were transported during the year.

A query of the form (l, r, x) is processed as follows:

· If the value x is not present in the map structure, we immediately print 0.

· Otherwise, using a binary search (lower_bound), find in the array p[x] the first index not less than l.

· If the found index does not exceed r, then the value x does indeed occur among the cities with indices from l to r.

Example
Let us consider how the structure p looks for the first example.
· p[123] = {1};
· p[314] = {3};

· p[434] = {5};

· p[666] = {2, 4};

For instance, to process the query (1, 5, 314), we need to perform the following steps:
· Check whether the array p[314] exists;

· Then, using binary search in the array p[314], find the smallest value not less than l = 1. In this case, the value is 1;

· Since it does not exceed r = 5, the answer to the query is 1.

Algorithm implementation
Let us define the data structures used:

· The array v stores statistical data on the number of people transported by trams;

· The map p contains, for each value x occurring in the input array v, the list of indices (positions) where this value appears.

vector<int> v;

map<int, vector<int>> p;

Read the input data.
cin >> n;

v.resize(n + 1);

for (i = 1; i <= n; i++)

{

 cin >> v[i];
In city number i, v[i] people were transported. The cities are numbered starting from 1.
 p[v[i]].push_back(i);

}

Read the number of queries q.
cin >> q;
The answer will be generated in the string result.
result = "";

Process the q queries (l, r, x) sequentially.
for (i = 0; i < q; i++)

{

 cin >> l >> r >> x;
If no city has transported x passengers, record ‘0’ as the answer.
 if (p.find(x) == p.end())

 {

 result += '0';

 continue;

 }

It is necessary to determine whether the array p[x] contains at least one number in the range from l to r. Search for the first occurrence in p[x] that is not less than l.
 vector<int>::iterator it = lower_bound(p[x].begin(), p[x].end(), l);

If such a number exists and it is not greater than r, record ‘1’ as the answer.
 if (it != p[x].end() && *it <= r)

 result += '1';

 else
 result += '0';

}

Print thre answer.

cout << result << endl;

