4483. The kid who learned to count
The young kid works as a controller on a ferry. His task is to ensure that the ferry does not sink due to exceeding its weight capacity. Today, there are only two tickets left on the ferry, along with the ability to carry an additional k kilograms.

In this forest, there is a single long road along which the animals live. Help the young kid determine whether he can find two passengers within a given section of the forest.

Input. The first line contains two integers n (2 ≤ n ≤ 10⁶) and k (1 ≤ k ≤ 10⁹) – the number of animals in the forest and the remaining weight capacity of the ferry, respectively.
The second line contains n integers – the weights of each animal.
The next line contains an integer m (1 ≤ m ≤ 10⁵) – the number of queries.
Each of the following m lines contains three integers t, l, r:
· If t = 1, then 1 ≤ l < r ≤ n – check whether it is possible to select two passengers among the animals in the range [l; r].
· If t = 2, then 1 ≤ l ≤ n, 1 ≤ r ≤ 109 – update the weight of the animal at index l to r kilograms.

Output. For each query of type 1, print “Yes” if the young goat can find two passengers within the specified range, and “No” otherwise.
A query of type 2 means that the weight of the animal at index l has been updated to r kilograms.
	Sample input
	Sample output

	6 9

1 3 1 6 6 7

8

1 1 6

1 1 2

2 4 7

1 4 5

1 5 6

2 1 7

2 3 8

1 1 6
	Yes

Yes

No

No

Yes

SOLUTION
data structures – segment tree, single modification
Algorithm analysis
A segment tree can be built to maintain the two smallest values in each range. However, in this problem, we are not interested in the exact minimum values but rather in the existence of two numbers whose sum does not exceed k.
The weights of the passengers are stored in the leaves of the segment tree. The internal nodes hold values according to the following rules:
· If the sum of the two smallest values in the left and right subtrees does not exceed k, then there exist two suitable passengers in the range [l; r]. In this case, store 0 in the node corresponding to the interval [l; r].

· Otherwise, store the minimum value of its two child nodes.
Processing the quesries.

· If the minimum value in the rang
e [l; r] is 0, then there exist two passengers whose total weight meets the condition, so the answer is “Yes”.
· Otherwise, the answer is “No”.
Example
Let’s build a segment tree for k = 9 and passenger weights 7, 3, 8, 7, 6, 7.

[image: image1.emf]0

3

38

73

6

67

76

[1; 6]

[1; 3]

[4; 6]

[1; 2]

[3; 3]

[4; 5]

[1; 1][2; 2][4; 4][5; 5]

[6; 6]

Among the fundamental segments,
only the node corresponding to [1; 6] will contain 0.
Algorithm implementation
Declare an array SegTree to store the segment tree. The weights of the animals are stored in the array a.
#define MAX 1000010

#define MAX_INT 1050000000

int SegTree[4*MAX];

int a[MAX];

The function f merges the values of the child nodes in the segment tree. The segment tree supports the minimum operation. However, if the sum of the values in the left and right child nodes does not exceed k, return 0.
Additionally, if at least one of the child nodes already contains 0, this means that two suitable passengers exist in its range, so we also return 0.
int f(int a, int b)

{

 if (a == 0 || b == 0 || a + b <= k) return 0;

 return min(a,b);

}

The function BuildTree constructs the segment tree. It takes as input the index of the current node v and the boundaries lpos and rpos corresponding to node v. The function f is used to merge the values of the child nodes.
void BuildTree(int v, int lpos, int rpos)

{

 if (lpos == rpos)

 SegTree[v] = a[lpos];

 else
 {

 int mid = (lpos + rpos) / 2;

 BuildTree(2 * v, lpos, mid);

 BuildTree(2 * v + 1, mid + 1, rpos);

 SegTree[v] = f(SegTree[2 * v], SegTree[2 * v + 1]);

 }

}
The function Query processes a range query on [left; right]. The node v corresponds to the segment [lpos, rpos].
· If there exist two passengers in the range [left, right] whose total weight does not exceed k, the function Query returns 0.
· Otherwise, it returns the minimum passenger weight in the given range.
int Query(int v, int lpos, int rpos, int left, int right)

{

 if (left > right) return MAX_INT;

 if ((lpos == left) && (rpos == right)) return SegTree[v];

 int mid = (lpos + rpos) / 2;

 return f(Query(2 * v, lpos, mid, left, min(right, mid)),

 Query(2 * v + 1, mid + 1, rpos, max(left, mid + 1), right));

}
The function Update updates the value of the element at index pos, assigning it val. The node v corresponds to the segment [lpos, rpos].

void Update(int v, int lpos, int rpos, int pos, int val)

{

 if (lpos == rpos)

 SegTree[v] = val;

 else
 {

 int mid = (lpos + rpos) / 2;

 if (pos <= mid) Update(2 * v, lpos, mid, pos, val);

 else Update(2 * v + 1, mid + 1, rpos, pos, val);

 SegTree[v] = f(SegTree[2 * v], SegTree[2 * v + 1]);

 }

}
The main part of the program. Read the weights of the animals into the array a, starting from index 0.
scanf("%d %d",&n,&k);

for (i = 0; i < n; i++) scanf("%d",&a[i]);

Build a segment tree based on the elements of the array a[0..n – 1].

BuildTree(1,0,n-1);

Process the queries sequentially.

scanf("%d",&q);

for (j = 0; j < q; j++)

{

 scanf("%d %d %d",&t,&l,&r);

 if (t == 1)

 {

 int Res = Query(1,0,n-1,l-1,r-1);

 if (Res == 0) printf("Yes\n"); else printf("No\n");

 }
 else

 Update(1,0,n-1,l-1,r) ;

}

_1754243102.vsd
0

3

3

8

7

3

6

6

7

7

6

[1; 6]

[1; 3]

[4; 6]

[1; 2]

[3; 3]

[4; 5]

[1; 1]

[2; 2]

[4; 4]

[5; 5]

[6; 6]

