4509. Vasya and sets
Vasya likes to formalize everything. For example, Vasya sees a lot of vegetables in his grandmother’s garden, and a lot of toys in his younger brother. And what will happen if you try to combine or to intersect n sets? Large and different sets – up to a million elements (inclusive)!

Since Vasya dreams to become a mathematician, he decided to start his research with the study of simpler sets, namely sets of integers.

Input. First line contains the number of different sets n (1 ≤ n ≤ 20). Then n sets given in the next format:

· First line contains number t (1 ≤ t ≤ 106) – the number of integers in the next line.

· Second line contains t integers xi (1 ≤ xi ≤ 106) – the elements of the set.

Next line contains the number of queries m (1 ≤ m ≤ 100). Each of the next m lines contains the queries of two types:

· INTERSECTION a b, where 1 ≤ a, b ≤ n
· UNION a b, where 1 ≤ a, b ≤ n
Output. Print for each query:

For the query of the first type the number of elements in the intersection of sets a and b.

For the query of the second type the number of elements in the union of sets a and b.

	Sample input
	Sample output

	2

2

1 2

2

2 3

2

INTERSECTION 1 2

UNION 1 2
	1

3

SOLUTION
dynamic programming - masks
Algorithm analysis
There are 20 sets in total, each of them stores numbers from 1 to 106. Let’s declare an array bitset<1000001> bs[20]; for their storage. The next step is to perform operations on the sets.
The elements of the sets are numbers from 1 to 106. There are no more than 20 sets, number them starting from 0. Let’s declare an array b of length 106, in the cell b[i] store the set (mask) of the numbers of the sets to which the number i belongs. Consider the following example:
· number 1 belongs to the zero’s set: b[1] = (1 << 0) = 12 = 1;
· number 2 belongs to the zero’s and the first set: b[2] = (1 << 0) || (1 << 1) = 112 = 3;

· number 3 belongs to the first set: b[3] = (1 << 1) = 102 = 2;

To determine the number of elements in the intersection (union) of the a-th and b-th sets, it is necessary to iterate all numbers from 1 to 106 and count how many of them belong to sets a and / or b.
Algorithm realization

Declare an array bs to store 20 sets.
#define MAX 1000001

bitset<MAX> bs[20];

Read the input data.
scanf("%d", &n);

for(i = 0; i < n; i++)

{
Read the size of the set t.

 scanf("%d", &t);
Read t elements of the set.

 while(t--)

 {

 scanf("%d", &x);
In set number i, set the x-th bit to one.
 bs[i][x] = 1;

 }

}

Read the number of queries m.
 scanf("%d\n", &m);

 while(m--)

 {

 scanf("%s%d%d\n", s, &t, &x);

 t--; x--;

Perform the operation given in s on sets number t and x. In the condition of the problem, the sets numbering starts from 1. In our case numbering starts from zero. Subtract one from the sets numbers.
 bitset<MAX> cur;

 if(s[0] == 'U')

 {

 cur = bs[t] | bs[x];

 printf("%d\n", cur.count());

 }

 else

 {

 cur = bs[t] & bs[x];

 printf("%d\n", cur.count());

 }

 }

}

Algorithm realization – sets, bitmasks
#define MAX 1000000

int b[MAX];

char c[20];

Read n sets.

scanf("%d", &n);

for(i = 0; i < n; i++)

{

Current set contains t elements.

 scanf("%d", &t);

 for(j = 0; j < t; j++)

 {

 scanf("%d",&a);

The number a is contained in the set number i. Set the i-th bit in the mask b[a] to one.
 b[a] |= (1 << i);

 }

}

Process q queries.

scanf("%d\n", &q);

while(q--)

{

Read the type of the query.

 scanf("%s %d %d\n", c, &x, &y);

 x--; y--;

 ans = 0;

Iterate through all the numbers j from 1 to 106. If the number j belongs to the set x and / or y, add one to the resulting number of elements res.
 if(c[0] == 'U')

 for(j = 1; j < MAX; j++)

 ans += ((b[j] & (1 << x)) || (b[j] & (1 << y)));

 else

 for(j = 1; j < MAX; j++)

 ans += ((b[j] & (1 << x)) && (b[j] & (1 << y)));

Print the answer.

 printf("%d\n", ans);

}

