4529. Fibonacci numbers: the last digit
Find the last digit of the k-th Fibonacci number.

Fibonacci numbers are defined by the following recurrence relations:

[image: image1.wmf]ï

î

ï

í

ì

>

+

=

=

=

-

-

1

,

1

1

2

1

1

0

i

f

f

f

f

f

i

i

i

Input. Each line contains a single number k (0 ≤ k ≤ 9223372036854775807).
Output. For each test case print in a separate line the last digit of the k-th Fibonacci number.
	Sample input
	Sample output

	0

1

2

37

135

23
	1

1

2

9

7

8

SOLUTION
Fibonacci numbers
Algorithm analysis
Consider the next problem. In how many ways is it possible to cover the strip 1 × n with domino of size 1 × 2 and squares of size 1 × 1? Let this number of ways be f(n). Obviously that f(1) = 1, f(2) = 2.
If we cover the first cell of the table with a square, then we need to cover the strip 1 × (n – 1), it can be done in f(n – 1) ways. If we cover the first and the second cell of the table with a domino, then we need to cover the strip 1 × (n – 2), it can be done in f(n – 2) ways.

[image: image2.emf]f(n) = f(n-1) + f(n-2)

Thus f(n) = f(n – 1) + f(n – 2), so f(n) are Fibonacci numbers.

[image: image3.emf]n = 3 n = 2 n = 4 n = 1

Let we have a table 1 × (n + m). It can be covered in f(n + m) ways. First we consider the coverings without domino that covers the cells n and n + 1.

[image: image4.emf]1

f(n)

n

f(m)

n+1 n+m

Then the first n cells can be covered with squares and dominos in f(n) ways, and the last m cells can be covered with f(m) ways. That is, the entire table can be covered in f(n) * f(m) ways.

Now consider the coverings where one domino covers the cells n and n + 1. We have f(n – 1) * f(m – 1) such coverings.

[image: image5.emf]1

f(n-1)

n

f(m-1)

n+1 n+m

Summarizing, we get that
f(n + m) = f(n) * f(m) + f(n – 1) * f(m – 1),

f(1) = 1, f(2) = 2.
Let's obtain some identities from the indicated recurrence:
· if m = n, then f(2n) = f(n) * f(n) + f(n – 1) * f(n – 1),
· if m = n + 1, then f(2n + 1) = f(n) * f(n + 1) + f(n – 1) * f(n)

Calculating the Fibonacci numbers using the above relations, we obtain the logarithmic complexity O(log2n).
Algorithm realization
Since the indices of the calculated Fibonacci numbers have the order of 1018, it is impossible to use a linear array of this size for memorization. To memorize the results we’ll use the map data structure.
map<long long, long long> fib;

The calculation of the n-th Fibonacci number.
long long f(long long n)

{

 if (n <= 1) return 1;

 if (n == 2) return 2;

 if (fib[n] != 0) return fib[n];

 long long k = n / 2;

 if (n % 2 == 0)
 return fib[n] = (f(k - 1) * f(k - 1) + f(k) * f(k)) % 10;

 return fib[n] = (f(k) * (f(k - 1) + f(k + 1))) % 10;

}

The main part of the program. Read the input value n and print the n-th Fibonacci number f(n).
while (scanf("%lld", &n) == 1)

 printf("%lld\n", f(n));

_1620815094.vsd
n = 3

n = 2

n = 4

n = 1

_1620815803.vsd
n

f(m)

1

f(n)

n+1

n+m

_1620816114.vsd
n

f(m-1)

1

f(n-1)

n+1

n+m

_1620815358.vsd
f(n)

=

f(n-1)

+

f(n-2)

_1620797902.unknown

